Can the Higgs Boson be the Inflaton?

Hint: Remember Hinchliffe's rule.

Michael Trott, Pl

Based on arXiv:0902.4465 with C.P Burgess and Hyun Min Lee

Inflation basics

We can be somewhat confident that inflation occurred as it is consistent with CMB measurements and it efficiently addresses the:

- flatness,
- homogeneity, isotropy,
- horizon and
- undesired relic problems. (string modulii, monopoles, gravitinos, etc)

WMAP 05

Some mechanism constructed to produce a slow roll inflationary scheme, generally with a scalar coupled to gravity.

Recall the slow roll parameters:
$$\epsilon(\phi) = \frac{M_{pl}^2}{2} \left(\frac{V'(\phi)}{V(\phi)}\right)^2$$
 $\eta(\phi) = M_{pl}^2 \left(\frac{V''(\phi)}{V(\phi)}\right)$ $\zeta(\phi) = M_{pl}^4 \frac{(V''')(V')}{V^2}$
So long as $|\eta(\phi)| \ll 1$ and $\epsilon(\phi) \ll 1$
Scale factor of the universe accelerating $\frac{\ddot{a}}{a} > 0$ ie Inflation occurs
Also recall the defns: $H \equiv \frac{\dot{a}}{a} = \frac{\sqrt{V(\phi)/3}}{M_{pl}}$ $M_{pl} = (8\pi G)^{-1/2} = 2.4 \times 10^{18} \,\text{GeV}$

General EFT construction

Consider the general Lagrangian of scalers θ^i coupled to the metric:

$$\begin{split} -\frac{L_{eff}}{\sqrt{-g}} &= v^4 V(\theta) + \frac{M_p^2}{2} g^{\mu\nu} \Big[W(\theta) \, R_{\mu\nu} + G_{ij}(\theta) \, \partial_\mu \theta^i \partial_\nu \theta^j \Big] \\ &+ A(\theta) (\partial \theta)^4 + B(\theta) \, R^2 + C(\theta) \, R \, (\partial \theta)^2 + \frac{E(\theta)}{M^2} \, (\partial \theta)^6 + \frac{F(\theta)}{M^2} \, R^3 + \cdots \\ \end{split}$$
All possible invariants involving one Riemann tensor and two derivatives acting on θ^i

$$M \text{ that makes up the dimensions is characteristic of whatever underlying microscopic physics has been integrated out, generally $M \ll M_p = (8 \, \pi \, G)^{-1/2} \end{split}$
All possible 3 Riemann tensor invariants, or two Riemann tensors and two covariant derivatives$$

General EFT construction

Consider the general Lagrangian of scalers θ^i coupled to the metric:

$$-\frac{L_{eff}}{\sqrt{-g}} = v^4 V(\theta) + \frac{M_p^2}{2} g^{\mu\nu} \Big[W(\theta) R_{\mu\nu} + G_{ij}(\theta) \partial_\mu \theta^i \partial_\nu \theta^j \Big] + A(\theta) (\partial \theta)^4 + B(\theta) R^2 + C(\theta) R (\partial \theta)^2 + \frac{E(\theta)}{M^2} (\partial \theta)^6 + \frac{F(\theta)}{M^2} R^3 + \cdots$$

Expand around a classical background solution

$$\theta^{i}(x) = \vartheta^{i}(x) + \frac{\phi^{i}(x)}{M_{p}} \text{ and } g_{\mu\nu}(x) = \hat{g}_{\mu\nu}(x) + \frac{h_{\mu\nu}(x)}{M_{p}},$$

The EFT is an expansion in

$$\simeq \left(\frac{H}{M}\right)^2 \qquad \frac{(\partial \theta)^2}{M^2} \simeq \left(\frac{\mu_{\phi}}{M}\right)^2$$

LESSON I: For these theories to have any hope of making sense $\frac{H}{M} \ll 1$

 $\frac{R}{M^2}$

"Adiabatic constraints"

Power Counting

Power counting is simple for $L_{int} = M^2 M_{pl}^2 \sum_n \frac{c_n}{M^{d_n}} O_n\left(\frac{\phi}{M_{pl}}, \frac{h_{\mu\nu}}{M_{pl}}\right)$

• Number of loops in a connected graph $L = 1 + I - \sum_{n} V_n$

• Conservation of ends in a connected graph $2I + \xi = \sum_{n} N_n V_n$ just topology • For a graph with V_n vertices get a factor $M_{pl}^{2-2L-\xi} \prod [c_n M^{2-d_n}]^{V_n}$

For an arbitrary graph regulated with dim reg:

$$A_{\xi}(E) \simeq M_{pl}^{2-2L-\xi} \prod_{n} \left[c_n \, M^{2-d_n} \right]^{V_n} \int \cdots \int \left(\frac{d^d p}{(2 \, \pi)^d} \right)^L \, \frac{\prod_{n} \, p^{d_n V_n}}{(P^2 - m_i^2)^I} \\ \simeq E^2 M^2 \left(\frac{1}{M_{pl}} \right)^{\xi} \left(\frac{E}{4\pi M_{pl}} \right)^{2L} \prod_{d_n=2} (c_n)^{V_n} \, \prod_{d_n=0} \left[\lambda_n \left(\frac{v^4}{E^2 M_{pl}^2} \right) \right]^{V_n} \, \prod_{d_n\geq 4} \left[g_n \left(\frac{E}{M_{pl}} \right)^2 \left(\frac{E}{M} \right)^{d_n-4} \right]^{V_n}$$

This is a powerfull eqn for studying scalar field inflation models.

Constraints

Power counting formula

$$A_{\xi}(E) \simeq E^{2} M^{2} \left(\frac{1}{M_{pl}}\right)^{\xi} \left(\frac{E}{4\pi M_{pl}}\right)^{2L} \prod_{d_{n}=2} (c_{n})^{V_{n}} \prod_{d_{n}=0} \left[\lambda_{n} \left(\frac{v^{4}}{E^{2} M_{pl}^{2}}\right)\right]^{V_{n}} \prod_{d_{n}\geq4} \left[g_{n} \left(\frac{E}{M_{pl}}\right)^{2} \left(\frac{E}{M}\right)^{d_{n}-4}\right]^{V_{n}} \prod_{d_{n}\geq4} \left[g_{n} \left(\frac{E}{M_{pl}}\right)^{2} \left(\frac{E}{M}\right)^{d_{n}-4}\right]^{V_{n}} \prod_{d_{n}\geq4} \left[g_{n} \left(\frac{E}{M_{pl}}\right)^{2} \left(\frac{E}{M_{pl}}\right)^{d_{n}-4}\right]^{V_{n}} \prod_{d_{n}\geq4} \left[g_{n} \left(\frac{E}{M_{pl}}\right)^{2} \left(\frac{E}{M_{pl}}\right)^{2} \left(\frac{E}{M_{pl}}\right)^{d_{n}-4}\right]^{V_{n}} \prod_{d_{n}\geq4} \left[g_{n} \left(\frac{E}{M_{pl}}\right)^{2} \left(\frac{E}{M_{pl}}\right)^{d_{n}-4}\right]^{V_{n}} \prod_{d_{n}\geq4} \left[g_{n} \left(\frac{E}{M_{pl}}\right)^{2} \left(\frac{E}{M_{pl}}\right)^{2} \left(\frac{E}{M_{pl}}\right)^{d_{n}-4}\right]^{V_{n}} \prod_{d_{n}\geq4} \left[g_{n} \left(\frac{E}{M_{pl}}\right)^{2} \left(\frac{E}{M_{pl}}\right)^{2} \left(\frac{E}{M_{pl}}\right)^{d_{n}-4}\right]^{V_{n}} \prod_{d_{n}\geq4} \left[g_{n} \left(\frac{E}{M_{pl}}\right)^{2} \left(\frac{E}{M_{pl}}\right)^{d_{n}-4}\right]^{V_{n}} \prod_{d_{n}\geq4} \left[g_{n} \left(\frac{E}{M_{pl}}\right)^{2} \left(\frac{E}{M_{pl}}\right)^{2} \left(\frac{E}{M_{pl}}\right)^{d_{n}-4}\right]^{V_{n}} \prod_{d_{n}\geq4} \left[g_{n} \left(\frac{E}{M_{pl}}\right)^{2} \left(\frac{E}{M_{pl}}\right)^{2$$

 $\boldsymbol{\Gamma}$

Power counting constraints:

$$\frac{E}{4\pi M_{pl}} \ll 1$$

$$g_n \left(\frac{E}{M_{pl}}\right)^2 \left(\frac{E}{M}\right)^{d_n - 4} \ll 1$$

LESSON 2: Power counting constraints for a sane expansion.

A particular model in an EFT will also have a cut off on E that above which unitarity will be violated.

This constraint on E will supply an upper bound on M for unitarity to be preserved.

LESSON 3: Unitarity violation constraints set an upper bound on E and thus on M.

How does Higgs inflation work?

1) Minimal coupling case ($\xi = 0$) doesn't work.

$$\mathcal{L}_{H} = (D_{\mu} H)^{\dagger} (D^{\mu} H) - \lambda_{H} \left(H^{\dagger} H - \frac{v^{2}}{2} \right)^{2} \qquad \text{Gauge rotation} \quad H^{T} = \frac{1}{\sqrt{2}} (0, v + \phi)$$
$$\mathcal{L}_{\phi} = (\partial_{\mu} \phi) (\partial^{\mu} \phi) - \frac{1}{2} (2 \lambda_{H} v^{2}) \phi^{2} - (\lambda_{H} v) \phi^{3} - (\frac{\lambda_{H}}{4}) \phi^{4}$$

As $\langle \phi \rangle \gg v$ during inflation this term is totally dominant

End of inflation is defined as when the slow roll conditions is violated $\epsilon \sim 8 \frac{M_{pl}^2}{\phi^2} \sim 1$ $\phi \sim \sqrt{8}M_{pl}$

Interested in the slow roll parameters when cosmologically interesting scales are leaving the horizon. The earlier field value is related to the number of e-folds:

Slow roll conditions and amplitude of density pert for these field values:

$$\epsilon \sim \frac{1}{N} \qquad \eta \sim \frac{3}{2N} \qquad \text{and} \qquad \Delta_R^2 = \frac{V}{24 \pi^2 M_{pl}^4 \epsilon} \qquad \text{at} \quad k^\star = 0.002 \, \text{Mpc}^{-1}$$
May 11th 2009 PHENO09 page 7/13

How does Higgs inflation work?

1) Minimal coupling case ($\xi = 0$) doesn't work.

$$\mathcal{L}_{H} = (D_{\mu} H)^{\dagger} (D^{\mu} H) - \lambda_{H} \left(H^{\dagger} H - \frac{v^{2}}{2} \right)^{2} \qquad \text{Gauge rotation} \quad H^{T} = \frac{1}{\sqrt{2}} (0, v + \phi)$$
$$\mathcal{L}_{\phi} = (\partial_{\mu} \phi) (\partial^{\mu} \phi) - \frac{1}{2} (2 \lambda_{H} v^{2}) \phi^{2} - (\lambda_{H} v) \phi^{3} - (\frac{\lambda_{H}}{4}) \phi^{4}$$

Slow roll conditions and amplitude of density pert for these field values:

$$\epsilon \sim \frac{1}{N} \qquad \eta \sim \frac{3}{2N} \qquad \text{and} \qquad \Delta_R^2 = \frac{V}{24 \, \pi^2 \, M_{pl}^4 \, \epsilon} \quad \text{at} \ k^\star = 0.002 \, \mathrm{Mpc}^{-1}$$

WMAP gives $\Delta_R^2 = (2.445 \pm 0.096) \times 10^{-9}$ trivially one finds: $\frac{2 \lambda_H N^3}{3 \pi^2} = (2.445 \pm 0.096) \times 10^{-9}$ $\lambda_H \sim 10^{-13}, m_H \sim 10^{-4} \text{ GeV}$ NOT the SM Higgs Conclusion: VERY FLAT potentials are hard to come by for scalar field inflation models, usually a lot of tuning is involved.

How does Higgs inflation work?

2) Non-Minimal coupling case: the Lagrangian is

$$S = \int d^4 x \sqrt{-g} \left[(\partial_\mu \phi)(\partial^\mu \phi) - \frac{1}{2} (2\lambda_H v^2) \phi^2 - (\lambda_H v) \phi^3 - (\frac{\lambda_H}{4}) \phi^4 - \frac{\xi}{2} \phi^2 R - \frac{M_{pl}^2}{2} R \right]$$

Not too offensive a term.

To minimize suffering everyone uses the Weyl rescaling to the Einstein frame:

$$\hat{g}_{\mu\,\nu} = \Omega^2 g_{\mu\,\nu}$$
 where $\Omega^2 = 1 + \frac{\xi\,\phi^2}{M_{pl}^2}$ and $V_E(\phi) = \frac{V(\phi)}{(1 + \xi\frac{\phi^2}{M_{pl}^2})^2}$

The Higgs field has a non-canonical kinetic term so perform a field redefinition:

The Einstein frame potential in terms of the canonical field makes the exponential flatness manifest:

$$V_E(\chi) \simeq \frac{\lambda M_{pl}^4}{\xi^2} \left[1 + A \exp(-a \chi/M_{pl})\right]^{-2}$$

$$\simeq \frac{\lambda M_{pl}^4}{\xi^2} \left[1 - 2A \exp(-a \chi/M_{pl})\right]$$
EXPONENTIALLY FLAT
potential "naturally" comes about!
May 11th 2009
PHENO09
page 9/13

How does Higgs inflation work?

2) Non-Minimal coupling case: the Lagrangian is

$$S = \int d^4x \sqrt{\hat{g}} \left[(\partial_\mu \chi) (\partial^\mu \chi) - \frac{M_{pl}^2}{2} \hat{R} - V_E(\chi) \right] \text{ where } \quad V_E(\chi) \simeq \frac{\lambda_H M_{pl}^4}{\xi^2} \left[1 - 2A \exp(-a\chi/M_{pl}) \right]$$

The slow roll parameters for can be worked out and one can compare to experiment (WMAP)

Higgs inflation	WMAP05/BAO/SN
$n_s \simeq 0.968$	$n_s = 0.960 \pm 0.013$
$r \simeq 3.0 \times 10^{-3}$	r < 0.22
lpha negligible	$-0.032^{+0.021}_{-0.013}$

Further WMAP05/BAO/SN gives $\Delta_R^2 = (2.445 \pm 0.096) \times 10^{-9}$

and
$$\Delta_R^2 = \frac{V}{24 \pi^2 M_{pl}^4 \epsilon}$$
 $\xi \simeq 5 \times 10^4 \left(\frac{m_h}{\sqrt{2} v}\right)$

Condition for this to work classically

PHENO09

page 10/13

How does Higgs inflation work?

3) Non-Minimal coupling case quantum corrections

Inflation is happening at energies much higher than the SM energies, we should run our parameters.

In Higgs Inflation the running gives a relationship between the following parameters:

Similar results for running of spectral index and the tensor to scalar ratio.

Power Counting vs Higgs Inflation

People got the cut off wrong when they didn't power count!

Power Counting vs Higgs Inflation

So we have a small window of validity of this as an EFT

$$1 \gg \frac{H}{M} \gg \sqrt{\lambda_H}$$
 all approximations valid, unitarity + adiabaticity
 $1 \gg \frac{H}{M} \gg 0.02$ including the 2 loop running to the high scale

It gets worse: • Higgs inflation relies on $V \propto (H^{\dagger}H)^2$ and a non minimal coupling $(H^{\dagger}H)R$

True in Higgs inflation when $H^{\dagger}H \gg \frac{M_{pl}^2}{\xi} \gg v^2$ Can't forbid by internal symmetries: $g(H^{\dagger}H)(\chi^{\dagger}\chi)$

The window is sensitive to massive particles integrated out.

$$\frac{g^2(H^{\dagger}H)}{(4\pi M_{\chi})^2} \ll \xi \qquad \frac{g^3(H^{\dagger}H)}{(4\pi M_{\chi})^2} \ll \lambda_H$$

PHENO09

page 13/13

• The cut off is
$$\frac{M_{pl}}{\xi}$$
 but the exponentially flat potential was for $\phi \simeq \frac{M_{pl}}{\sqrt{\xi}} \exp\left(\frac{\chi}{\sqrt{6}M_{pl}}\right)$
Recall $V_E(\chi) \simeq \frac{\lambda_H M_{pl}^4}{\xi^2} \left[1 - 2A \exp(-a\chi/M_{pL}) + \cdots\right]$
So we don't know the potential for the field values where inflation is said to occur
May 11th 2009 PHENO09 page 13/13

Conclusions

On the plus side:

- Higgs inflation, or something like it, is very promising in that an exponentially flat potential is somewhat "natural".
- The Higgs inflation proposal (or something like it) has the potential to relate WMAP data to the properties of the scalars measured in accelerators.

On the minus side:

- The large non minimal coupling constants lead to the theories of this type having **cut offs far below the planck scale and below the slow roll region of the potential**.
- The tuning on the cut off scale can be found by **power counting** which finds the most problematic unitarity constraint.

$$1 \gg \frac{H}{M} \gg \sqrt{\lambda_H}$$
 Higgs inflation region of validity

 Very small tuned windows of validity as an EFT, that require no other new physics, and you don't actually know the potential during inflation.