QCD Corrections to Scalar Di-quark Production

Ian Lewis, University of Wisconsin May 12, 2009 Collaborators: Tao Han, Tom McElmurry

Motivation

- Hadron colliders (Tevatron, LHC) explore high energy frontier of physics beyond the Standard Model.
- Event rates dominated by strong interactions.
- Any new particle that participates in QCD interactions will be produced at favorable rates.
- For rather heavy particles, valence quarks are still the major contribution for their production.
- At pp colliders, such as the LHC, this means quark-quark scattering can dominate.

Quark-Quark Annihilation

- $3 \times 3 = 6 + \overline{3}$
- Examples of color sextet and anti-triplet:
 - Color triplet scalar quarks in R-parity violating SUSY [Barbier *et al.*, hep-ph/0406039]
 - Color sextet scalars are present in some partialunification models [Mohapatra et al., 0709.1486 [hep-ph]]
- We approach phenomenologically and don't assume any model.

Model

- The SM-gauge invariant Lagrangian
- $\mathcal{L} = (D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi) M_{\Phi}^{2}\Phi^{\dagger}\Phi$ $+ 2\sqrt{2} \Big[K_{c_{2}c_{3}}^{c_{1}}\Phi_{c_{1}}^{\dagger}q_{i}^{c_{2}T}C^{-1}(\lambda_{L}^{ij}P_{L} + \lambda_{R}^{ij}P_{R})q_{j}^{\prime c_{3}} + h.c. \Big]$
 - $D_{\mu} = \partial_{\mu} ig_s G^a_{\mu} T^a$ is the QCD covariant derivative
 - C is a charge conjugation matrix
 - c₁,c₂,c₃ are color indices
 - *i,j* are flavor indices
 - $K_{c_2c_3}^{c_1}$ are Clebsch-Gordan coefficients

NLO Calculation

- At $O(\alpha_s)$ have contributions from loop diagrams, real gluon emission, and gluon initiated processes.
- Diagrams contain ultra-violet (UV), soft, and collinear divergences.
- All divergences are regulated using dimensional regularization in d=4-2ε dimensions
- MS-bar scheme used to cancel UV and collinear divergences.
- Calculation done for stop production by Tilman Plehn [hep-ph/0006182]

LHC Cross Section

- pp at 14 TeV
- $\mu_{\text{F}} = \mu_{\text{R}} = m_D$
- Di-quark is produced at favorable rates.

K-factors

 The K-factor is the ratio of the NLO cross section to leading order cross section

May 12, 2009

Scale Dependence

- Factorization and renormalization scales varied for $m_D/4 < \mu_F = \mu_R < m_D$
- m_D=1 TeV
- Scale dependence of NLO cross section is less than that of the leading order cross section

Transverse Momentum Distribution

Perturbative calculation diverges at p_T->0

Resummation, ct'd

 Resummation performed by Collins, Soper, and Sterman [Nucl. Phys. B 250, 199 (1985)]:

$$\frac{d^2 \sigma^{resum}}{dp_T^2 dy} = \frac{\sigma_0}{S} \int \frac{d^2 b}{(2\pi)^2} e^{i\mathbf{b}\cdot\mathbf{p_T}} W(b^*) e^{-S_{np}}$$

• $W(b) = \exp\left\{-\int_{b_0^2/b^2}^{m_D^2} \frac{dq^2}{q^2} \frac{\alpha_s(q^2)}{2\pi} \left[\ln\left(\frac{m_D^2}{q^2}\right) A^{(1)} + B^{(1)}\right]\right\}$
 $\times [f_q(x_1^0)_{q'}(x_2^0) + (x_1^0 \leftrightarrow x_2^0)]$

•
$$b_0 = 2e^{-\gamma_E}; \quad b^* = \frac{b}{\sqrt{1 + b^2/b_{max}^2}}$$

•
$$A^{(1)} = 2C_F, \quad B^{(1)} = -(3 + 2\frac{N_C \pm 2}{N_C \pm 1})C_F$$

April 15, 2009

Ian Lewis, University of Wisconsin

Non-perturbative Effects

 Parameterize non-perturbative effects following Davies, Webber, and Stirling [Nucl. Phys. B 256, 413 (1985)]

$$S_{np} = b^2 \left[g_1 + g_2 \log \frac{b_{max} m_D}{2} \right]$$

 From Tevatron data, g₁=0.14 GeV², g₂=0.54 GeV², and b_{max}=(2 GeV)⁻¹ [Landry et. al., hep-ph/0212159]

Matching

• To match the perturbative and resummed distributions:

$$\frac{d\sigma^{general}}{dp_T dy} = \frac{d\sigma^{pert}}{dp_T dy} + f(p_T) \left(\frac{d\sigma^{resum}}{dp_T dy} - \frac{d\sigma^{asym}}{dp_T dy}\right)$$

• $f(p_T) = \frac{1}{1 + (p_T/p_T^{match})^4}$ is an ad hoc function

- p_T^{match} is the boundary line above which the the perturbative calculation is accurate

Resummation Results

- Results of transverse momentum resummation.
- At low p_T , asymptotic and perturbative distributions agree well.
- Distribution peaks at p₇ ~ 5 GeV

Summary

- Diquarks produced at favorable rates and LHC.
- K-factors for production from initial state valence quarks:
 - 1.3-1.35 for anti-triplet diquark
 - 1.2-1.3 for sextet diquark
- Much larger K-factors for pure sea quark scattering
- We performed the soft gluon resummation for small transverse momentum.
- Transverse momentum distribution peaks at p_T~5 GeV

Parton Luminosity

- Parton luminosity defined to be
 - $\frac{d\mathcal{L}_{ij}}{d\hat{\tau}} = \int_{\hat{\tau}}^{1} \frac{dx_a}{x_a} [f_{a/A}(x_a) f_{b/B}(\hat{\tau}/x_a) + (A \leftrightarrow B \ if \ a \neq b)]$

• Where $\hat{\tau} = x_a x_b = \hat{s}/S$

Ian Lewis, University of Wisconsin

Renormalization

- Renormalization constants in MS-bar scheme:
- Quark wave-function: $Z_2^q = 1 \frac{\alpha_s C_F}{4\pi} \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \frac{1}{\epsilon}$
- Di-quark wave-function: $Z_2^D = 1 + \frac{\alpha_s C_D}{2\pi} \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \frac{1}{\epsilon}$

• Vertex: $Z_{\lambda} = 1 - \frac{\alpha_s C_F}{4\pi} \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \frac{1}{\epsilon} \left(4 - 2\frac{N_C \pm 2}{N_C \pm 1}\right)$

 The scale dependence of the quark-di-quark coupling is found to be

$$\lambda(\mu_R^2) = \frac{\lambda(Q^2)}{1 + \frac{3\alpha_s C_F}{4\pi} \ln\left(\frac{\mu_R^2}{Q^2}\right)}$$

Ian Lewis, University of Wisconsin

Tevatron Cross Section

- p-pbar at 2 TeV
- $\mu_{\text{F}} = \mu_{\text{R}} = m_D$
- Scattering involving valence quarks dominates

LHC Cross Section

- LHC will initially turn on at a lab frame energy of 10 TeV
- pp at 10 TeV
- $\mu_{\mathsf{F}} = \mu_{\mathsf{R}} = m_D$

LHC Cross Section

	m_D	σ_{LO}^{CTEQ6L}	$\sigma_{LO}^{CTEQ6.1M}$	$\sigma_{NLO}^{CTEQ6.1M}$	$\sigma_{\Phi+q}^{CTEQ6.1M}$	$\sigma_{\Phi+g}^{CTEQ6.1M}$
uu	$500 { m GeV}$	$1.23 \times 10^4 \text{ pb}$	$1.33 \times 10^4 \text{ pb}$	$1.51 \times 10^4 \text{ pb}$	$1.58 \times 10^3 \text{ pb}$	$4.07 \times 10^3 \text{ pb}$
	1 TeV	$1.60 \times 10^3 \text{ pb}$	$1.72 \times 10^3 \text{ pb}$	$1.98 \times 10^3 \text{ pb}$	101 pb	784 pb
dd	$500 { m GeV}$	$2.86 \times 10^3 \text{ pb}$	$3.14 \times 10^3 \text{ pb}$	$3.84 \times 10^3 \text{ pb}$	356 pb	$1.11 \times 10^3 \text{ pb}$
	1 TeV	294 pb	317 pb	396 pb	21.1 pb	161 pb

- Jet cross sections for p_T>20 GeV
- Gluon jet cross section dominant, especially for higher masses

Scale Dependence

- Factorization and renormalization scales varied for $m_D/4 < \mu_F = \mu_R < m_D$
- m_D=500 GeV
- Scale dependence of NLO cross section is less than that of the leading order cross section