Why SUSY GUTs imply that the bulk of dark matter

is made of axions

Howard Baer University of Oklahoma

- \star SO(10) motivation
- ★ Yukawa unification
- \star Sparticle mass calculation
- ★ Dark matter problem
 - mixed axion/axino DM
- **\star** cosmology of SUSY SO(10)
- \star SO(10) at LHC
 - can see with just 0.1 fb⁻¹!

SO(10): synopsis

 \star SO(10) is a rank-5 Lie group which contains the SM gauge symmetry.

- matter unification in *spinorial* **16**
- The 16 contains *all* the matter in a single generation of the SM, plus a RHN state \hat{N}^c : see-saw ν -masses
- SO(n) (except n = 6) are naturally anomaly-free, thus explaining the seemingly fortuitous anomaly cancellation in the SM and in SU(5).
- Explains *R*-parity conservation
- Explains why 2 Higgs doublets in MSSM
- Expect $t b \tau$ Yukawa unification in simplest models

Yukawa unification in SUSY: assumptions

- some form of 4-d or x-d SO(10) SUGRA-GUT valid at $Q > M_{GUT}$
- SUGRA breaking via superHiggs mechanism: $m_{\tilde{G}}\sim 1~{\rm TeV}$ and soft SUSY breaking terms $\sim 1~{\rm TeV}$
- SO(10) breaks to MSSM or MSSM plus gauge singlets at $Q = M_{GUT}$ either via Higgs mechanism (4-d) or x-d compactification
- MSSM (or MSSM plus \hat{N}^c) is correct effective theory between M_{SUSY} and M_{GUT}
- EWSB broken radiatively due to large m_t
- we will assume that $t b \tau$ Yukawa couplings unify at $Q = M_{GUT}$

lots of previous work!

- B. Ananthanarayan, G. Lazarides and Q. Shafi, PRD44 (1991)1613 and PLB300 (1993)245;
- V. Barger, M. Berger and P. Ohmann, PRD49 (1994)4908;
- M. Carena, M. Olechowski, S. Pokorski and C. Wagner, NPB426 (1994)269;
- B. Ananthanarayan, Q. Shafi and X. Wang, PRD50 (1994)5980;
- L. Hall, R. Rattazzi and U. Sarid, PRD50 (1994)7048;
- R. Rattazzi and U. Sarid, PRD53 (1996)1553;
- T. Blazek, M. Carena, S. Raby and C. Wagner, PRD56 (1997)6919; T. Blazek and S. Raby, PLB392 (1997)371 and PRD59 (1999)095002; T. Blazek, S. Raby and K. Tobe, PRD60 (1999)113001 and PRD62 (2000)055001;

more recent work

- H. Baer, M. Diaz, J. Ferrandis and X. Tata, PRD61 (2000)111701
- H. Baer, M. Brhlik, M. Diaz, J. Ferrandis, P. Mercadante, P. Quintana and X. Tata, PRD63 (2001)015007;
- H. Baer and J. Ferrandis, PRL87 (2001)211803;
- T. Blazek, R. Dermisek and S. Raby, PRL88 (2002)111804 and PRD65 (2002)115004;
- D. Auto, H. Baer, C. Balazs, A. Belyaev, J. Ferrandis and X. Tata, JHEP0306 (2003)023
- D. Auto, H. Baer, A. Belyaev and T. Krupovnickas, JHEP0410 (2004)066;
- R. Dermisek, S. Raby, L. Roszkowski and R. Ruiz de Austri, JHEP0304 (2003)037 and JHEP0509 (2005)029
- H. Baer, S. Kraml, S.Sekmen and H. Summy, arXiv:0801.1831 (2008).

Sparticle mass spectra

- \star Mass spectra codes
- ★ RGE running: $M_{GUT} \rightarrow M_{weak}$
 - Isajet 7.78 (HB, Paige, Protopopescu, Tata)
 - $* \geq 7.72$: Isatools
 - SuSpect (Djouadi, Kneur, Moultaka)
 - SoftSUSY (Allanach)
 - Spheno (Porod)

★ Comparison (Belanger, Kraml, Pukhov)

★ Website: http://kraml.home.cern.ch/kraml/comparison/

Yukawa unification requires

precision calculation of SUSY spectrum:

Hall, Rattazzi, Sarid; Pierce et al. (PBMZ)

- need full 2-loop RGE running
- full threshold corrections calculated at optimized scale
 - applies especially to b-quark self-energy
 - $\ \widetilde{g} \widetilde{b}_i$, $\widetilde{W}_i \widetilde{t}_j$, \cdots loops included
- off-sets Yukawa coupling RG trajectory
- use lsajet/lsasugra spectrum generator

Yukawa unification in MSSM: Isajet and SoftSUSY

Howie Baer, UW Pheno 2009 meeting, May 12, 2009

SO(10)-inspired parameter space:

- $m_{16}, m_{10}, M_D^2, m_{1/2}, A_0, \tan\beta, sign(\mu)$
- Here, M_D^2 parametrizes splitting of Higgs soft terms at M_{GUT} :

$$m_{H_{u,d}}^2 = m_{10}^2 \mp 2M_D^2$$

- ★ The Higgs splitting only (HS) method gives better Yukawa unification than full *D*-term splitting (DT) model for $\mu > 0$ and $m_{16} \stackrel{>}{\sim} 2$ TeV
 - HS can arise at 10-15% level at GUT scale due to threshold corrections (BDR)

Top-down scan of HS model with $\mu > 0$

Auto, HB, Balazs, Belyaev, Ferrandis, Tata New analysis: HB, Kraml, Sekmen, Summy

Correlation of SSB terms for YU models

 \star Note correlation amongst parameters:

- $A_0 \sim -2m_{16}$
- $m_{10} \sim 1.2 m_{16}$
- $\tan\beta \sim 50$
- ★ Earlier work: Bagger, Feng, Polonsky, Zhang derived $A_0^2 = 2m_{10}^2 = 4m_{16}^2$ with $m_{1/2}$ tiny and Yukawa unified couplings: in context of "radiatively induced inverted scalar mass hierarchy model"
 - Meant to reconcile naturalness with FCNC suppression by having $m(third gen. scalars) \ll m(1st/2nd ge. scalars)$
 - Original model needed to be reconciled with EWSB; get hierarchy, but much less than anticipated: HB, Balazs, Mercadante, Tata, Wang (2001)

$t - b - \tau$ Yukawa unification in HS model!

- need $m_{10} \simeq \sqrt{2}m_{16}$
- $A_0 \simeq -2m_{16}$
- inverted scalar mass hierarchy: Bagger et al.
- split Higgs: $m_{H_u}^2 < m_{H_d}^2$
- Auto, HB, Balazs, Belyaev, Ferrandis, Tata
 - $m_{\tilde{q},\tilde{\ell}}(1,2) \sim 10 ~{\rm TeV}$
 - $-m_{\tilde{t}_1}, m_A, \mu \sim 1-2 \text{ TeV}$
 - $-m_{\tilde{g}}\sim 300-500~{\rm GeV}$
- Blazek, Dermisek, Raby
 - small $\mu, m_A \sim 100 200 \text{ GeV}$

Neutralino dark matter

- ***** Why *R*-parity? natural in SO(10) SUSYGUTS if properly broken, or broken via compactification (Mohapatra, Martin, Kawamura, \cdots)
- \star In thermal equilibrium in early universe
- \star As universe expands and cools, freeze out
- ★ Number density obtained from Boltzmann eq'n

•
$$dn/dt = -3Hn - \langle \sigma v_{rel} \rangle (n^2 - n_0^2)$$

- depends critically on thermally averaged annihilation cross section times velocity
- ★ many thousands of annihilation/co-annihilation diagrams
- \star several computer codes available
 - DarkSUSY, Micromegas, IsaReD (part of Isajet)

Problem: reconcile DM with Yukawa unification

 \star best solution: axion/axino DM instead of neutralino

- each $\widetilde{Z}_1 \to \widetilde{a}\gamma$ so $\Omega_{\widetilde{a}}h^2 \sim \frac{m_{\widetilde{a}}}{m_{\widetilde{Z}_1}}\Omega_{\widetilde{Z}_1}h^2$: \Rightarrow warm DM
- also thermal component depending on T_R : \Rightarrow CDM
- also axion DM via vacuum mis-alignment

Axions

- \star PQ solution to strong CP problem in QCD
- ★ pseudo-Goldstone boson from PQ breaking at scale $f_a \sim 10^9 10^{12}$ GeV
- ★ non-thermally produced via vacuum mis-alignment as *cold* DM

•
$$m_a \sim \Lambda_{QCD}^2 / f_a \sim 10^{-6} - 10^{-1} eV$$

•
$$\Omega_a h^2 \sim \frac{1}{2} \left[\frac{6 \times 10^{-6} eV}{m_a} \right]^{7/6} h^2$$

- astro bound: stellar cooling $\Rightarrow m_a < 10^{-1} eV$
- a couples to EM field: $a \gamma \gamma$ coupling (Sikivie)
- axion microwave cavity searches

Axino \tilde{a} dark matter

- axino is spin- $\frac{1}{2}$ element of axion supermultiplet (*R*-odd; can be LSP)
- $m_{\tilde{a}} \mod \text{dependent}$: keV $\rightarrow \text{GeV}$
- $\widetilde{Z}_1 \to \widetilde{a}\gamma$
- non-thermal \tilde{a} production via \widetilde{Z}_1 decay:
- axinos inherit neutralino number density
- $\Omega_{\tilde{a}}^{NTP}h^2 = \frac{m_{\tilde{a}}}{m_{\tilde{Z}_1}}\Omega_{\tilde{Z}_1}h^2$:

Thermally produced axinos

★ If $T_R < f_a$, then axinos never in thermal equilibrium in early universe

- \star Can still produce \tilde{a} thermally via radiation off particles in thermal equilibrium
- ★ Brandenberg-Steffen calculation:

$$\Omega_{\tilde{a}}^{TP}h^2 \simeq 5.5g_s^6 \ln\left(\frac{1.108}{g_s}\right) \left(\frac{10^{11} \text{ GeV}}{f_a/N}\right)^2 \left(\frac{m_{\tilde{a}}}{0.1 \text{ GeV}}\right) \left(\frac{T_R}{10^4 \text{ GeV}}\right) \quad (1)$$

Howie Baer, UW Pheno 2009 meeting, May 12, 2009

Thermally produced axinos for $f_a/N = 10^{12}$ GeV

Howie Baer, UW Pheno 2009 meeting, May 12, 2009

Consistent cosmology for SUSY SO(10): gravitino problem

• gravitino problem in generic SUGRA models: overproduction of G followed by late \tilde{G} decay can destroy successful BBN predictons: upper bound on T_R

Howie Baer, UW Pheno 2009 meeting, May 12, 2009

Alternative leptogenesis scenarios

- Upper bound on T_R from BBN is below that for successful *thermal* leptogenesis: need $T_R \gtrsim 10^{10}$ GeV (Buchmuller, Plumacher)
- Alternatively, one may have non-thermal leptogenesis where inflaton $\phi \rightarrow N_i N_i$ decay
- additional source of N_i in early universe allows lower T_R :

$$\frac{n_B}{s} \simeq 8.2 \times 10^{-11} \times \left(\frac{T_R}{10^6 \text{ GeV}}\right) \left(\frac{2m_{N_1}}{m_{\phi}}\right) \left(\frac{m_{\nu_3}}{0.05 \text{ eV}}\right) \delta_{eff}$$
(2)

- Also, Affleck-Dine leptogenesis in $\phi = \sqrt{H\ell} D$ -flat direction: $T_R \sim 10^6 10^8$ GeV allowed
- WMAP observation: $n_b/s \sim 0.9 \times 10^{-10} \Rightarrow T_R \stackrel{>}{\sim} 10^6 \text{ GeV}$

Cold axion and cold/warm axino DM in the universe

 \star Four cases:

- 1. Take $f_a/N = 10^{11}$ GeV so $\Omega_a h^2 = 0.017$. Bulk of DM must be thermally produced \tilde{a} . Take $\Omega_{\tilde{a}}^{TP} = 0.083$ and $\Omega_{\tilde{a}}^{NTP} = 0.01$
- 2. Take $f_a/N = 4 \times 10^{11}$ GeV so $\Omega_a h^2 = 0.084$. (Bulk of DM is cold axions.) Take $\Omega_{\tilde{a}}^{TP} = \Omega_{\tilde{a}}^{NTP} = 0.013$
- 3. Take $f_a/N = 10^{12}$ GeV and lower mis-align error bar so $\Omega_a h^2 = 0.084$. (Bulk of DM is cold axions.) Take $\Omega_{\tilde{a}}^{TP} = \Omega_{\tilde{a}}^{NTP} = 0.013$
- 4. Take $f_a/N = 10^{12}$ GeV but allow accidental near vacuum alignment so $\Omega_a h^2 \sim 0$. Bulk of DM must be thermally produced axinos. Take $\Omega_{\tilde{a}}^{TP} = 0.1$ and $\Omega_{\tilde{a}}^{NTP} = 0.01$
- Given $\Omega_{\widetilde{Z}_1}h^2$ and $m_{\widetilde{Z}_1}$ and $\Omega_{\widetilde{a}}^{NTP}h^2$ can calculate $m_{\widetilde{a}}$.
- Given $\Omega_{\tilde{a}}^{TP}h^2$, $m_{\tilde{a}}$ and f_a/N , can calculate re-heat temperature of universe

Consistent cosmology for SO(10) SUSY GUTs with mixed a/\tilde{a} DM

- Happily, T_R falls into the right range to give *cold* axion/axino DM with a small admixture of warm axino DM, preserve BBN predictions and have non-thermal leptogenesis!
- See HB and H. Summy, PLB666, 5 (2008)
- HB, Kraml, Haider, Sekmen and Summy, arXiv:0812.2693

Howie Baer, UW Pheno 2009 meeting, May 12, 2009

Consistent cosmology for SO(10) SUSY GUTs with a/\tilde{a} DM

- Want $T_R \stackrel{>}{\sim} 10^6$ GeV for NT leptogenesis but $< 10^{10}$ GeV to solve BBN/gravitino problem
- Below: Isajet/SoftSUSY comparison
- viable solutions need $f_a/N \stackrel{>}{\sim} 4 \times 10^{11} {\rm ~GeV}$
- also prefer $m_{16} \stackrel{>}{\sim} 10 \text{ TeV}$

Howie Baer, UW Pheno 2009 meeting, May 12, 2009

Prediction of new physics at LHC from SO(10) **SUSYGUTs**:

- gluino pair production with $m_{\tilde{g}} \sim 350-450~{\rm GeV}$
- $\sigma(pp \to \tilde{g}\tilde{g}X) \sim 10^5~{\rm fb}$
- major decays: $\tilde{g} \to b\bar{b}\widetilde{Z}_2$, $\tilde{g} \to t\bar{b}\widetilde{W}_1 + c.c.$
- high *b*-jet multiplicity
- $m_{\widetilde{Z}_2} m_{\widetilde{Z}_1} \sim 50 75~{\rm GeV}$ dilepton mass edge

Production of sparticles at LHC

Howie Baer, UW Pheno 2009 meeting, May 12, 2009

Gluino branching fractions in Yukawa unified SUSY

Howie Baer, UW Pheno 2009 meeting, May 12, 2009

What SO(10) SUSY GUTs look like at LHC

- with $m_{\tilde{g}} \sim 400$ GeV, expect $\sigma(pp \rightarrow \tilde{g}\tilde{g}X) \sim 10^5$ fb!
- LHC detectors would have LOTS of SUSY events!
- But, it will take time to measure many SM processes to reliably calibrate the entire detector for $jets + \not\!\!\!E_T$ search
- Could be a year or two if experience is similar to that of Tevatron D0 detector....

As theorists, we are an impatient bunch...

- Expect $\tilde{g}\tilde{g}$ events to be rich in jets, *b*-jets, isolated ℓ s, τ -jets,....
- These are *detectable*, rather than inferred objects
- - dead regions
 - "hot" cells
 - cosmic rays
 - calorimeter mis-measurement
- Answer: YES! See HB, Prosper, Summy, PRD77, 055017 (2008)
- electron ID problem? go with multi-muons: HB, Lessa, Summy, arXiv:0809.4719

If early *e* ID problematic: focus on SS and multi-muons

• HB, A. Lessa and H. Summy, PLB674 (2009) 49.

Cuts C1' plus $\geq 2 OS/SF \ell$

Howie Baer, UW Pheno 2009 meeting, May 12, 2009

Cuts C1' plus $\geq 4 \ b$ -jets+ $\ell^+ \ell^-$

Cuts C1' plus $\geq 4 \ b$ -jets+ $\ell^+ \ell^-$

Axion microwave cavity searches

★ ongoing searches: ADMX experiment

- Livermore \Rightarrow U Wash.
- Phase I: probe KSVZ for $m_a \sim 10^{-6} 10^{-5} \ eV$
- Phase II: probe DFSZ for $m_a \sim 10^{-6} 10^{-5} \ eV$
- beyond Phase II:
 probe higher values m_a

Conclusions

- ★ SO(10) + SUSY: expect $t b \tau$ Yukawa unification
- **★** For $\mu > 0$, get YU for HS model with $A_0^2 \sim 2m_{10}^2 = 4m_{16}^2$
- \star Can reconcile with DM abundance: $\widetilde{Z}_1 \rightarrow \widetilde{a}\gamma$
- ★ Cosmology: axion/axino DM solution gives consistent cosmology: gravitino problem and non-thermal leptogenesis
- \star Predict possible a discovery but no WIMP signals
- **★** Predict $m_{\tilde{g}} \sim 400$ GeV, decoupled scalars: LHC awash in $\tilde{g}\tilde{g}$ events
- ★ Can see signal with only 0.1 fb⁻¹ of integrated luminosity in jets +OS/SF di-muon or $\geq 3\mu$ channel
- \star $m(\ell^+\ell^-)$ mass edge $\sim 50-75$ GeV; reconstruct $m_{\tilde{g}}, m_{\tilde{Z}_2}, m_{\tilde{Z}_1}$?
- ★ We will soon know if Yukawa unified SUSY is correct theory of weak scale physics! LHC data in 2009!