Testing Gaugino Mass Hypotheses at the LHC

Brent D. Nelson

with B. Altunkaynak, M. Holmes, P. Grajek and G. Kane

hep-ph/0901.1145 JHEP 04 (2009) 114

Pheno Symposium 2009

May 11, 2009

• **Q:** LHC era is (almost) here – what should theorists be doing now?

- Q: LHC era is (almost) here what should theorists be doing now?
- A1: Short run: improving the toolkit
 - ⋆ Boosted tops
 - $\star~M_{T2}$, M_{TGen} , etc.
 - → Jet reconstruction algorithms
 - ⋆ Spin measurement techniques
 - Standard Model backgrounds
 - * ...

- Q: LHC era is (almost) here what should theorists be doing now?
- A1: Short run: improving the toolkit
 - ⋆ Boosted tops
 - \star M_{T2} , M_{TGen} , etc.
 - ⋆ Jet reconstruction algorithms
 - Spin measurement techniques
 - Standard Model backgrounds
 - * ...
- **A2:** Medium run: think two to three years out. Post-discovery, what will be the big issues?
 - Assume SUSY is established early on by standard methods what next?
 - Will want to connect observations to some underlying framework
 - For me: an underlying string framework (hopefully)

• **Q**: How is this best accomplished?

- Q: How is this best accomplished?
- A1: Through fits to simple benchmark models

Allanach et al., Ellis et al.

- ★ For example, mSUGRA at first
- Then perturbed sequentially using goodness-of-fit as our guide
- Effectively a "directed walk through theory space"
- Pro: Completely and utterly obvious thing to do
- Pro: Quasi-model independent
- Con: Computationally intensive
- Con: May saturate its effectiveness early on in LHC era
- Con: Suffers from the "LHC inverse problem"

Arkani-Hamed et al., **JHEP 0608** (2006) 070

A2: Via the method of model footprints

Kane et al.

- Pick models and map their parameter space onto signature space
- Pro: Guaranteed to have consistent high-scale model
 assuming LHC data falls in at least one footprint! (See below)
- Pro: Requisite analysis can be done once and for all "offline," ahead of the experiment
- * Pro: LHC inverse problem less of an issue
- Con: Goodness-of-fit trickier to determine
- Con: "Straw-man effect": method best at discriminating <u>between</u> models, not so much establishing a model
- Con: Maximally model-dependent: only as good as our imagination in dreaming up models (the problem with all top-down methods)

- A3: Try to extract *broad characteristics* of the underlying theory
 - \star Measurement of $m_{\tilde{N}_2}-m_{\tilde{N}_1}$ \star Measurement of $m_{\tilde{N}_2}$ itself

 - \star Extraction of the values of M_2 , μ , $\tan \beta$,...
 - \star Evidence of how the μ -term was generated in the first place

- A3: Try to extract broad characteristics of the underlying theory
 - \star Measurement of $m_{ ilde{N}_2}-m_{ ilde{N}_1}$
 - \star Measurement of $m_{ ilde{N}_2}$ itself
 - \star Extraction of the values of M_2 , μ , $\tan \beta$,...
 - \star Evidence of how the μ -term was generated in the first place
 - Pro: LHC inverse problem completely avoided
 - Pro: Directly probe the things theorists most care about
 (e.g. gaugino mass unification) Binetruy, Kane, Lykken and BDN, J. Phys. G32 (2006) 129
 - Pro/Con: Never been tried before...
 - ★ Con: ...because it's outrageously difficult!
- Want to know this independent of everything else that's going on with the supersymmetry breaking Lagrangian (if possible)
- Big job: need a tractable and concrete starting point

Mirage pattern of gaugino masses – a one-parameter family:

$$M_1: M_2: M_3 \simeq (1+0.66\alpha): (2+0.2\alpha): (6-1.8\alpha)$$

- A logical first step
 - * Easy to understand and visualize
 - \star Interpolates between mSUGRA ($\alpha = 0$) and AMSB limit ($\alpha \to \infty$)
 - Motivated by a variety of constructions, including string theory (heterotic and Type II) as well as "deflected" AMSB
 - ⋆ Disadvantage: Only one-parameter family of models ⇒ not fully general
- All values of α correspond to a unified pattern the only issue is at which energy scale they unify Choi & Nilles, JHEP 0704 (2007) 006
 - \star When $\alpha=0$ gaugino masses unify at $M_{\rm GUT}\simeq 2\times 10^{16}~{
 m GeV}$
 - \star Other α values give effective unification scale elsewhere (hence "mirage")
 - \star Example: $\alpha=2$ gives $M_1\simeq M_2\simeq M_3$ at low-energy scale
 - Scale dependent! Coefficients change with scale (here 1 TeV)

⇒ High scale: universal and anomaly-induced piece to gaugino masses

$$M_a\left(\Lambda_{\mathrm{UV}}\right) = M_a^{\mathrm{univ}}\left(\Lambda_{\mathrm{UV}}\right) + M_a^{\mathrm{anom}}\left(\Lambda_{\mathrm{UV}}\right) = M_u + g_a^2\left(\Lambda_{\mathrm{UV}}\right) \frac{b_a}{16\pi^2} M_g$$

• Gauge couplings continue to unify at the $\Lambda_{ ext{UV}} = \Lambda_{ ext{GUT}}$ scale

$$g_1^2\left(\Lambda_{ ext{UV}}
ight) = g_2^2\left(\Lambda_{ ext{UV}}
ight) = g_3^2\left(\Lambda_{ ext{UV}}
ight) = g_{ ext{GUT}}^2 \simeq rac{1}{2}$$

Anomaly piece is proportional to SM beta-function coefficients

- If these are going to be competitive you need $M_g \gtrsim 30 M_u$
- ⇒ Now evolve to electroweak scale using one-loop RGEs

$$M_a\left(\Lambda_{\text{EW}}\right) = M_u \left\{ 1 - g_a^2\left(\Lambda_{\text{EW}}\right) \frac{b_a}{8\pi^2} \ln\left(\frac{\Lambda_{\text{UV}}}{\Lambda_{\text{EW}}}\right) \left[1 - \frac{1}{2} \frac{M_g}{M_u \ln\left(\frac{\Lambda_{\text{UV}}}{\Lambda_{\text{EW}}}\right)} \right] \right\}$$

A Quick Derivation of the Mirage Pattern (II)

 \Rightarrow Introduce the parameter $lpha = rac{M_g}{M_u \ln(\Lambda_{
m UV}/\Lambda_{
m EW})}$

$$M_a\left(\Lambda_{\rm EW}\right) = M_u \left[1 - \left(1 - \frac{\alpha}{2}\right) g_a^2 \left(\Lambda_{\rm EW}\right) \frac{b_a}{8\pi^2} \ln\left(\frac{\Lambda_{\rm UV}}{\Lambda_{\rm EW}}\right)\right]$$

- Some notable properties of this solution
 - \star If you can engineer $M_q \sim 30 M_u$ then you obtain $\alpha \sim 1$
 - \star When $\alpha = 2$ gaugino masses universal at the electroweak scale
 - \star Take $\Lambda_{\rm EW}=1000~{
 m GeV}$, $\Lambda_{\rm UV}=\Lambda_{\rm GUT}$ and divide through by $M_1\left(\Lambda_{\rm EW}\right)|_{\alpha=0}$

$$M_1: M_2: M_3 = (1.0 + 0.66\alpha): (1.93 + 0.19\alpha): (5.87 - 1.76\alpha)$$

 \Rightarrow Finding the scale of "mirage unification": redefine $\alpha \equiv \frac{M_g}{M_u \ln \left(M_{\rm PL}/M_g \right)}$

$$M_a\left(\Lambda_{\text{EW}}\right) = M_u \left\{ 1 - g_a^2 \left(\Lambda_{\text{EW}}\right) \frac{b_a}{8\pi^2} \left[\ln \left(\frac{\Lambda_{\text{UV}} \left(M_g/M_{\text{PL}}\right)^{\alpha/2}}{\Lambda_{\text{EW}}} \right) \right] \right\}$$

Effective unification scale is now at

$$oldsymbol{\Lambda_{ ext{mir}}} = oldsymbol{\Lambda_{ ext{GUT}}} \left(rac{M_g}{M_{ ext{PL}}}
ight)^{oldsymbol{lpha}/2}$$

Model A

M.K. Gaillard and BDN, Int. J. Mod. Phys. A22 (2007) 1451

- Based on heterotic string theory
- Dilaton stabilized with non-perturbative corrections to the Kähler potential
- \star Stabilization mechanism causes $M_g \sim 30 M_u$
- Scalar masses generally universal
- \star Absolute prediction: $\alpha \gtrsim 0.12$

Model B

Choi, Falkowsi, Nilles, Olechowski, NPB 718 (2005) 113 Falkowski, Lebedev, Mambrini, JHEP 0511 (2005) 034

- ⋆ Based on Type II string theory
- Includes internal fluxes for moduli stabilization
- \star Large warping in compact space produces $M_g \sim 30 M_u$
- AMSB plays a large role in all soft terms
- \star Basic model predicts $\alpha \simeq 1$

Deint	Λ	В
Point	А	_
α	0.3	1.0
aneta	10	10
$\Lambda_{ m mir}$	2.0×10^{14}	1.5×10^9
M_1	198.7	851.6
M_2	172.1	553.3
M_3^-	154.6	339.1
A_t	193.0	1309
A_b	205.3	1084
$A_{ au}$	188.4	1248
$m_{Q_3}^2$	$(1507)^2$	$(430.9)^2$
$m_{Q_3}^2$ $m_{U_3}^2$	$(1504)^2$	$(610.3)^2$
$m_{D_3}^2$	$(1505)^2$	$(352.2)^2$
m_{I}^2	$(1503)^2$	$(381.6)^2$
$m_{E_3}^2$	$(1502)^2$	$(407.9)^2$
$m_{E_3}^{L_3}$ $m_{Q_{1,2}}^2$	$(1508)^2$	$(208.4)^2$
$ m_{U_1,2}^2 $	$(1506)^2$	$(302.7)^2$
$m_{D_{1},2}$	$(1505)^2$	$(347.0)^2$
m_I^2	$(1503)^2$	$(379.8)^2$
$ m_{E_{1}}^2 $	$(1502)^2$	$(404.5)^2$
$m_{H_{u}}^2$	$(1500)^2$	$(752.0)^2$
$\begin{bmatrix} m_{Hu}^2 \\ m_{Hd}^2 \end{bmatrix}$	$(1503)^2$	$(388.7)^2$

All values in GeV

Parameter	Point A	Point B	Parameter	Point A	Point B
$m_{\widetilde{N}_1}$	85.5	338.7	$m_{ ilde{t}_1}$	844.7	379.9
$\mid m_{\widetilde{N}_2} \mid$	147.9	440.2	$\mid m_{ ilde{t}_2} \mid$	1232	739.1
$\mid m_{\widetilde{N}_3} \mid$	485.3	622.8	$\mid m_{ ilde{c}_L}, m_{ ilde{u}_L} \mid$	1518	811.7
$\mid m_{\widetilde{N}_4} \mid$	494.0	634.3	$\mid m_{ ilde{c}_R}$, $m_{ ilde{u}_R}$	1520	793.3
$m_{\widetilde{C}_1^{\pm}}$	147.7	440.1	$m_{ ilde{b}_1}$	1224	676.8
$m_{\widetilde{C}_2^{\pm}}$	494.9	635.0	$\mid m_{ ilde{b}_2} \mid$	1507	782.4
$\mid m_{ ilde{g}} \mid$	510.0	818.0	$\mid m_{ ilde{s}_L}$, $m_{ ilde{d}_L}$	1520	815.4
$\mid \mu \mid$	476.1	625.2	$\mid m_{ ilde{s}_R}$, $m_{ ilde{d}_R}^{\;$	1520	793.5
m_h	115.2	119.5	$m_{ ilde{ au}_1}$	1487	500.4
$\mid m_A$	1557	807.4	$\mid m_{ ilde{ au}_2} \mid$	1495	540.4
$\mid m_{H^0} \mid$	1557	8.608	$\mid m_{ ilde{\mu}_L}, m_{ ilde{e}_L} \mid$	1500	545.1
$m_{H^{\pm}}$	1559	811.1	$m_{ ilde{\mu}_R}, m_{ ilde{e}_R}$	1501	514.6

Low Energy Physical Masses for Benchmark Points

- \Rightarrow Our goal is to ask how well we can determine α at the LHC using only actual observations
- Most importantly, can we demonstrate $\alpha \neq 0$?
- Want to do this independent of any particular model
- Not going to assume reconstruction any sparticle masses
- We will assume we know all other inputs for the Monte Carlo comparison to data – unrealistic but this is a first step
- ⇒ Basic idea: use an ensemble of signatures wisely chosen to perform a fit of Monte Carlo to "data"
- We break the problem into a "base model" specified by the parameters

$$\left\{\begin{array}{c} \tan \beta, \ m_{H_u}^2, \ m_{H_d}^2 \\ M_3, \ A_t, \ A_b, \ A_\tau \\ m_{Q_{1,2}}, \ m_{U_{1,2}}, \ m_{D_{1,2}}, \ m_{L_{1,2}}, \ m_{E_{1,2}} \\ m_{Q_3}, \ m_{U_3}, \ m_{D_3}, \ m_{L_3}, \ m_{E_3} \end{array}\right\}$$

and a value of α which determines the three gaugino masses (with overall scale set by M_3)

Simulation Methodology: Overview

- Given a model we construct a **model line** by varying α while keeping the base model fixed
- For each point we generate data using PYTHIA + PGS4 and construct our signatures
- Analysis is performed using a modification of ROOT generated by Baris Altunkaynak at Northeastern

http://www.atsweb.neu.edu/ialtunkaynak/heptools.html#parvicursor

- How do we determine the value of α ? We compare Monte Carlo predictions for our signatures against the "data"
- For example, we can ask whether we can distinguish the prediction for the case $\alpha=0$ from the data we simulate at $\alpha\neq 0$

Interlude: On "Distinguishability"

- \Rightarrow We want to distinguish models A and B using the n (counting) signatures S_i
- Define a measure in signature space analogous to a chi-squared variable

$$(\Delta S_{AB})^2 = \frac{1}{n} \sum_{i} \left[\frac{S_i^A - S_i^B}{\delta S_i^{AB}} \right]^2$$

• Convert to effective cross-sections via $\bar{\sigma}_i = S_i/L$ and assuming errors are purely statistical (\sqrt{N})

$$(\Delta S_{AB})^2 = \frac{1}{n} \sum_{i} \left[\frac{\bar{\sigma}_i^A - \bar{\sigma}_i^B}{\sqrt{\bar{\sigma}_i^A / L_A + \bar{\sigma}_i^B / L_B}} \right]^2$$

• We always include the Standard Model background so that $\bar{\sigma}_i = \bar{\sigma}_i^{ ext{SUSY}} + \bar{\sigma}^{ ext{SM}}$

Interlude: On "Distinguishability"

- \Rightarrow We want to distinguish models A and B using the n (counting) signatures S_i
- Define a measure in signature space analogous to a chi-squared variable

$$(\Delta S_{AB})^2 = \frac{1}{n} \sum_{i} \left[\frac{S_i^A - S_i^B}{\delta S_i^{AB}} \right]^2$$

• Convert to effective cross-sections via $\bar{\sigma}_i = S_i/L$ and assuming errors are purely statistical (\sqrt{N})

$$(\Delta S_{AB})^2 = \frac{1}{n} \sum_{i} \left[\frac{\bar{\sigma}_i^A - \bar{\sigma}_i^B}{\sqrt{\bar{\sigma}_i^A / L_A + \bar{\sigma}_i^B / L_B}} \right]^2$$

- We always include the Standard Model background so that $ar{\sigma}_i = ar{\sigma}_i^{ ext{SUSY}} + ar{\sigma}^{ ext{SM}}$
- So how big should $(\Delta S_{AB})^2$ be to say models A and B are distinguished from one another?
- LHC Inverse criterion: this number needs to be at *least* as big as the value induced by quantum fluctuations
 Arkani-Hamed et al., JHEP 0608 (2006) 070

Towards a Universal Definition of "Distinguishable"

- Effect of fluctuations estimated by comparing the same single model to itself many times and computing $(\Delta S_{AA})^2\big|_{95}$
- But this really depends on the model point and (especially) the signature list you choose to consider

- Effect of fluctuations estimated by comparing the same single model to itself many times and computing $(\Delta S_{AA})^2\big|_{95}$
- But this really depends on the model point and (especially) the signature list you choose to consider
- We can obtain an analytic answer valid for any model pair and any signature list provided
 - Fluctuations for each signature are assumed to be uncorrelated
 - \star We assume that our extracted $\bar{\sigma}_i$ are very close to the true cross-section values σ_i
 - * We assume assume the count rates form normal distributions
- Under these assumptions $(\Delta S_{AB})^2$ is a randomly-distributed variable with a probability distribution of

$$P(\Delta S^2) = n \, \chi_{n,\lambda}^2(n\Delta S^2)$$

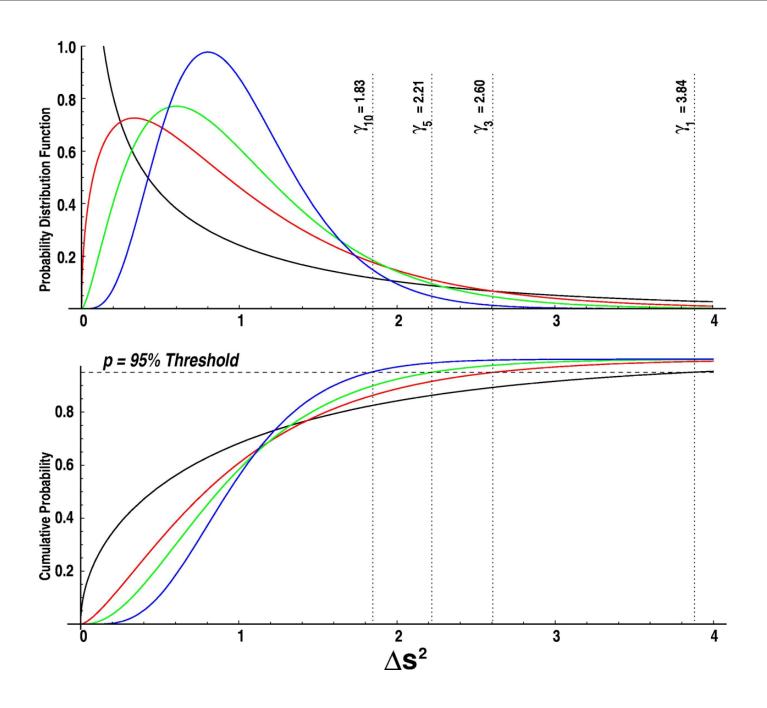
where $\chi^2_{n,\lambda}$ is the non-central chi-squared distribution for n degrees of freedom

Non-central Chi-Square Distribution

- $\Rightarrow (\Delta S_{AB})^2$ distributed according to a non-central chi-square distribution
- The non-centrality parameter
 \(\lambda \) is given by

$$\lambda = \sum_{i} \frac{(\sigma_i^A - \sigma_i^B)^2}{\sigma_i^A / L_A + \sigma_i^B / L_B}$$

- Taking $\lambda = 0$ gives distribution for $(\Delta S_{AA})^2$
- Can now solve analytically for $(\Delta S_{AA})^2\big|_p \equiv \gamma_n(p)$ for any confidence level p as a function of the number of signatures n
- Having $(\Delta S_{AB})^2 > (\Delta S_{AA})^2\big|_{95}$ may be thought of as a *necessary* condition, but it is not *sufficient* to distinguish models A and B
- \Rightarrow For two models that truly are different we expect $\lambda \neq 0$
- \Rightarrow We want to quantify the probability that two truly distinct models undergo a fluctuation such that their measured $(\Delta S_{AB})^2$ is a very low value

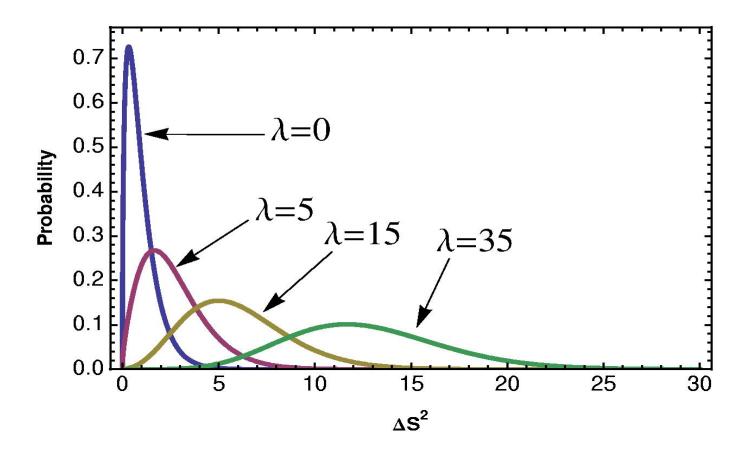


Our Distinguishability Criterion

 \Rightarrow Want the probability for $(\Delta S_{AB})^2$ to fluctuate below $\gamma_n(p)$ to be less than 5%

$$P = \int_{\gamma_n(p)}^{\infty} n \, \chi_{n,\lambda}^2(n\Delta S_{AB}^2) \, d(\Delta S_{AB}^2) = \int_{n\gamma_n(p)}^{\infty} \chi_{n,\lambda}^2(y) \, dy \ge 0.95$$

- When P=0.95 we have found the minimum value $\lambda_{\min}(n)$ for the non-centrality parameter



Converting λ_{\min} to Signatures

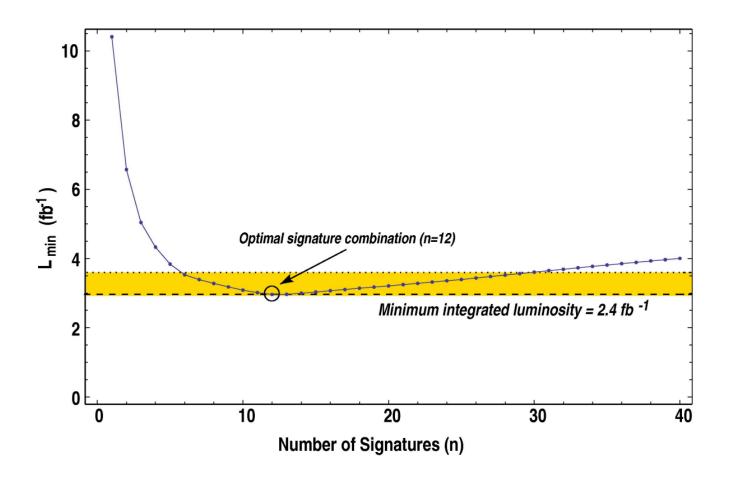
- Any combination of n-parameters yielding $\lambda > \lambda_{\min}(n)$ will be effective in demonstrating that the two models are indeed distinct, 95% of the time, with a confidence level of 95%
- The value of λ is proportional to integrated luminosity

$$L_{\min} = \frac{\lambda_{\min}(n)}{R_{AB}} \quad \text{with} \quad R_{AB} = \sum_{i} (R_{AB})_i = \sum_{i} \frac{(\sigma_i^A - \sigma_i^B)^2}{\sigma_i^A + \sigma_i^B}$$

- \Rightarrow All the physics of the specific signature list is contained in R_{AB} !
- This just says given any signature list there is always some minimal luminosity that will distinguish the models
- Now the goal is clear: choose your signature list so as to maximize R_{AB} , with as few signatures as possible so as to minimize $\lambda_{\min}(n)$

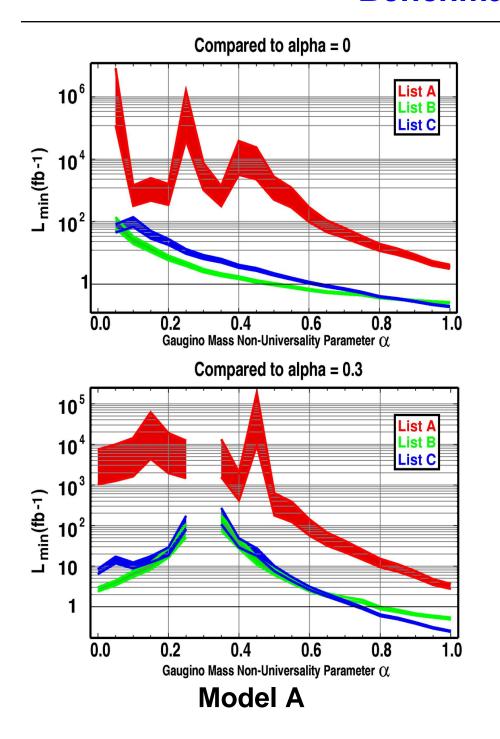
Choosing an Optimal Signature List

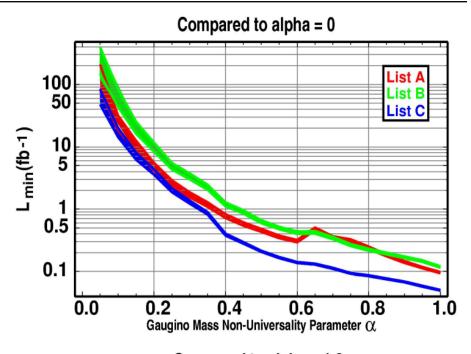
- Given a model pair A and B compute the absolute quantity $(R_{AB})_i$ for all of the possible signatures you can imagine
- Now order them from highest R_i value (smallest L_{\min}) to smallest R_i value (largest L_{\min}) what fraction of the list should you employ?

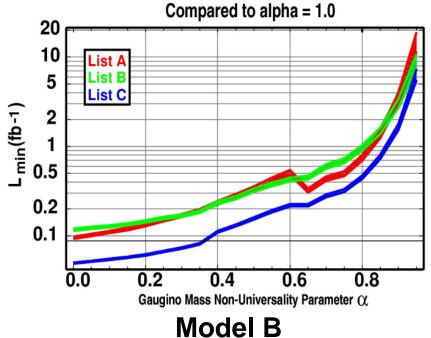


Choosing an Optimal Signature List

- Given a model pair A and B compute the absolute quantity $(R_{AB})_i$ for all of the possible signatures you can imagine
- Now order them from highest R_i value (smallest L_{\min}) to smallest R_i value (largest L_{\min}) what fraction of the list should you employ?
- No cheating! Can't use your best signature N times... (correlations)
- Kitchen sink method is not ideal!
 - \Rightarrow Take a big hit since $\lambda(n)$ eventually grows faster than $\sum_i R_i$
- For any particular pair of models you can optimize this choice
- But once you average over a large ensemble of models the list will now only be (at best) close to optimal for any model







(Intermediate) Conclusions

- LHC v2.0 will be about synthesis of multiple measurements
 - ⇒ Theorists can and will play a major role here
- Bigger is not necessarily better when using LHC observations!
 - ⇒ Experimentalists know this well theorists sometimes less so
- Rather than fit to models can we fit to characteristics?
 - → Yes, at least in this (artificial) first step