

PHASE-SPACE STRUCTURE OF THE

MILKY WAY'S DARK HALO

Leanne Duffy Los Alamos National Laboratory

(Phys. Rev. D 78, 063508 (2008), with P. Sikivie, LA-UR-08-0789)

Overview

- Dark matter phase-space distribution and detection.
- Evolution and phenomenology of cold dark matter in phase-space.
- Predictions for the Milky Way halo.
- Is this substructure important in our galaxy?

Cold dark matter

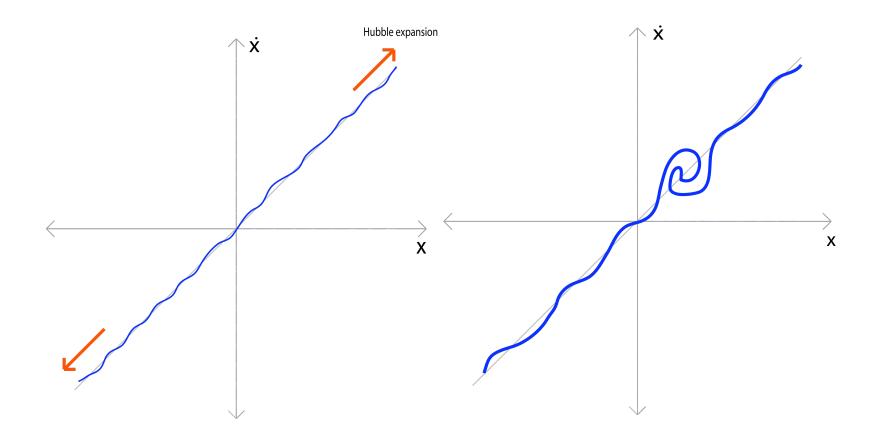
- Contributes $\sim 80\%$ of the total matter in the universe (baryons $\sim 20\%)$
- Forms galactic halos visible galaxies are located at the center of more massive, dark halos
- Non-relativistic, with small velocity dispersion (matter-radiation equality):
 - axions: $\delta v_a \sim 10^{-14} c$ (zero mode)
 - WIMPS: $\delta v_W \sim 10^{-7} c$
- The only significant interactions are gravitational (collisionless)

Dark matter detection

- WIMP direct detection:
 - Measure the number of recoils per energy bin (dN/dE)
 - $E \propto v^2$
 - Rate \propto local density
- Axion direct detection:
 - Look for resonant conversion of axions to photons by measuring power output from a microwave cavity
 - Signal amplitude \propto local density
 - Signal width: $\delta \nu = \nu v \delta v$

- WIMP indirect detection:
 - Search for decay or annihilation products (e.g. $\gamma,\,e^-,\,e^+,\,\overline{p},\,\nu{\rm s...})$
 - Decay rate $\propto \rho$
 - Annihilation rate $\propto
 ho^2$
 - Weak dependence on non-relativistic velocities

Knowing the phase-space distribution, $f(\mathbf{x}, \mathbf{v})$, would aid dark matter detection efforts.



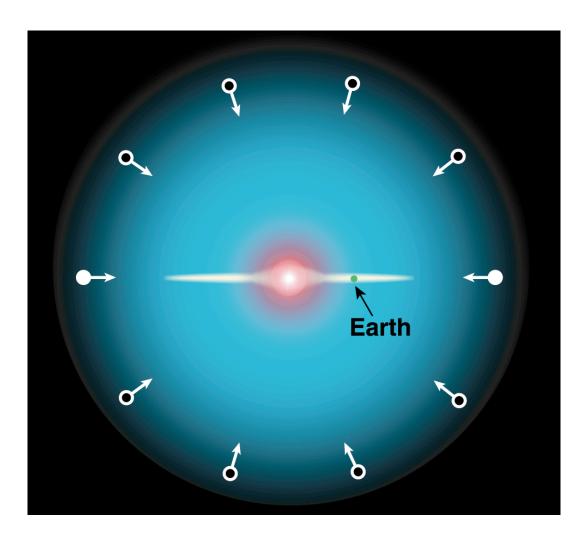
CDM phase-space

- Phase-space is 6-D
- For negligible velocity dispersion, CDM is restricted to lie on a 3-D hypersurface in the 6-D space

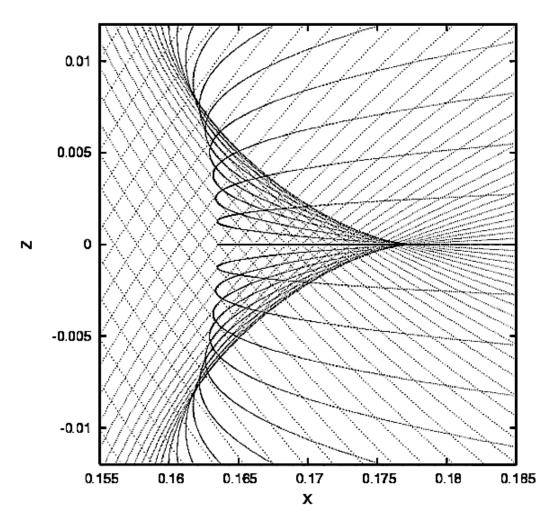
Hubble expansion Gravitational infall

Phenomenology

- An observer in a simple overdensity will see two main features:
 flows and caustics.
- \bullet Caustics form where the mapping from phase space to physical space goes from $n\mbox{-to-one}$ to $(n\pm2)\mbox{-to-one}.$
- Caustics are regions of high density in physical space.



The Caustic Ring Model


- Follows simple evolution of CDM in phase-space
- Model is self-similar, therefore known properties of the Milky Way galaxy today can be used to fit for the phase-space distribution of CDM
- Our recent work characterizes the phase-space distribution of Milky Way halo for current best parameters
- The caustic ring model contains two types of caustics: outer (spheres) and inner (rings).

Physical picture



Particle Trajectories

Predictions

(See LD & P.Sikivie, PRD 78, 063508 (2008) for full details)

- Outer caustics: radii and DM densities
- Inner caustics: locations, DM velocities and mass infall rates
- DM flow densities and velocities on Earth
- The "Big Flow":

$$\rho_{BF} = 1.5 \times 10^{-24} \text{g/cm}^3$$
(1)

Some caveats

- The late accelerated expansion of the universe introduces a scale
- evolution is no longer self-similar.
- Virialization of the inner halo will remove early caustic structure late infall of cold dark matter can still produce caustics and coherent flows.
- How significant caustic structure is within a galactic halo is still an open question.
- Model assumes a smooth potential. Perturbations to the potential will distort caustic structure (see Natarajan & Sikivie, 2006). Infalling dark matter must have $\delta v \ll v_{esc}$.

Debate

(1) Simulations:

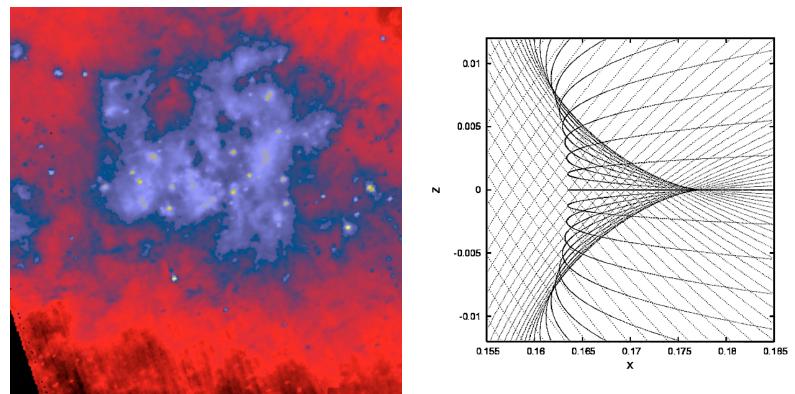
- Issue with resolution (Diemand et al., 2008; Diemand & Kuhlen, 2008; Vogelsberger et al., 2008).
- New techniques to locate streams, but not their properties (Vogelsberger et al., 2007).

(2) Theory:

- New general framework, which does not require symmetry or smooth accretion (Afshordi, Moyahaee & Bertschinger, 2008).
- Gives predictions for statistical properties.

Simulations

- 10⁵ particles in 2 kpc³ gives 1 particle per 8×10⁴ pc³ (Vogelsberger et al., 2008).
- The scale of a caustic is \sim 20 pc, so the related volume scale is \sim 8×10³ pc³.
- We actually need to resolve phase-space, which is 6 dimensional, not 3.


Summary

- Discrete flows and caustics are a consequence of cold dark matter.
- Late infall of dark matter may lead to significant caustic substructure. We have characterized the caustic ring model for our galaxy.
- Such substructure, if significant, will have important consequences for dark matter detection.

Is this a caustic?

See http://www.phys.ufl.edu/~sikivie/triangle/index.htm for more.