Extra Dímensions at the LHC

Kaustubh Agashe (University of Maryland)

Outline and Summary

Warped extra dimensions address Planck-weak and flavor hierarchies: new (KK) particles at a few TeV (precision tests)

Challenging for LHC: techniques to detect highly boosted top/W/Z (experimentalists'input!)required

Relax constraints by KK parity: no coupling of single (lightest) new particle to SM

WARPED EXTRA DIMENSION

Motivations

Planck-weak and flavor hierarchy (without severe flavor problem)

Weakly-coupled "tool" for 4D strong dynamics: dual to 4D composite Higgs (AdS/CFT)

GUT's: (i) dark matter from proton stablity (KA, Servant);
 (ii) gauge coupling unification with precision ~ SUSY
 (KA, Contino, Sundrum)

Tantalizing unification: magic of β -function: SM $-2t_R - H$

(KA, Contino, Sundrum)

 Lightest mode (SM) + heavier 4m(Kaluza-Klein: KK) with 3mprofiles 2m

5m

 \mathcal{m}

Gravity and Higgs (Randall, Sundrum)

 $kR \sim \log \left(M_{Pl}/\text{TeV} \right) / \pi \sim 10$

SM in bulk

(Davoudiasl, Hewett, Rizzo; Pomarol; Grossman, Neubert; Chang, Hisano, Nakano, Okada,Yamaguchi; Gherghetta, Pomarol)

Couplings from overlap of profiles

Flavor hierarchy (fermion-Higgs) without hierarchy in 5D parameters (5D Yukawa, 5D mass M): fermion profile ~ $e^{-k\pi RM\cdots}$...related to Planck-weak hierarchy

Couplings to KK large (small) for top (electron)

NO PARITY, PRECISION TESTS NEW PARTICLES FEW TEV

Summary (rough)

Tree-level contributions to flavor and EW precision tests

Iower limit on KK mass scale:~O(3) TeV (built-in mechanism + model-building)

EWPRECISION TESTS

S parameter

Equivalent to shift in coupling:

5D warped Higgsless models (breaking by boundary condition) (Csaki, Grojean, Pilo, Terning)

Flat profiles for fermions suppression in S
 (Cacciapaglia, Csaki, Grojean, Terning)

< 1 TeV KK's unitarize WW scattering</p>

(See talks by N. Christensen and K. Hsieh)

Custodial symmetries

T parameter (KA, Delgado, May, Sundrum) and Zbb (KA, Contino, Da Rold, Pomarol)

Sew fit with ~ 3 TeV KK masses (Carena, Ponton, Santiago, Wagner)

About "~" in ~3 TeV

...due to model-variations (all explain hierarchies)

 brane-localized terms (Davoudiasl, Hewett, Rizzo; Carena, Delgado, Ponton, Tait, Wagner)

• Higgs profile (Davoudiasl, Lillie, Rizzo; Cacciapaglia, Csaki, Marandella, Terning)

"soft" wall (metric not AdS near IR
 "brane" (McGuirk, Shiu, Zurek; Falkowski, Perez-Victoria; Batell, Gherghetta, Sword; Delgado, Diego)
 See talks

FLAVOR PRECISION TESTS

Flavor hierarchy from profiles => flavor violation from KK's

 <u>Non</u>-universal, but <u>diagonal</u> coupling to gauge <u>KK</u>'s in gauge/weak basis...

• <u>off</u>-diagonal in mass basis (in general): $\dots D_{L}^{\dagger} \operatorname{diag} \left(g_{d}^{KK}, g_{s}^{KK} \right) D_{L} \dots \rightarrow \left(g_{s}^{KK} - g_{d}^{KK} \right) (D_{L})_{12} \times \overline{d_{L}}_{\mathrm{mass}} \gamma^{\mu} A_{\mu}^{(n)} s_{L} \operatorname{mass}$

Warped GIM: <u>built-in</u> suppression mechanism...

 Non-universality in gauge KK coupling \propto (difference of) 4D Yukawa: Higgs profile ~ KK (Gherghetta, Pomarol; Huber, Shafi; KA, Perez, Soni)

• Mixing angles $\sim \sqrt{\frac{m_d}{m_s}}$ \longrightarrow O(TeV)-scale new physics still alive (not in flat)!

Summary (rough) of quark and lepton sectors: warped GIM, but 1 or 10 TeV?

 $@\sim O(10)$ TeV from ϵ_K (Csaki, Falkowski, Weiler) and from LFV including neutrino mixings (Perez, Randall; KA)

...but...

- room from multiple "O(1)" factors: e.g. Higgs profile/size of 5D Yukawa for quarks (KA, Azatov, Zhu: see talk by A. Azatov); "decoupling" neutrino mixing from charged leptons using Dirac (KA, Okui, Sundrum) or new SU(2)_R representations (KA) ~ >> ~O(5) TeV allowed
- flavor symmetries (Fitzpatrick, Perez, Randall; Santiago; Csaki, Falkowski, Weiler; Csaki, Grossman, Perez, Surujon, Weiler); smaller than Planck-weak UV-IR hierarchy (Davoudiasl, Perez, Soni) for parametric suppression

About "~ O" in ~ O(5 or 10) TeV

...due to...

• "~..." : soft wall etc. like for EW precision tests

 "O…": scan over 5D Yukawa entries (intrinsic to solution to flavor puzzle) — mild tuning allows lower KK scale (Blanke, Buras, Duling, Gori, Weiler)

Other sources of flavor violation

• Higgs exchange: see talk by L. Zhu

 Radion ("fluctuations of size of extra dimension") exchange: see talk by M. Toharia

Don't give up on~3 TeV KK scale!!

LHC SIGNALS FOR KK PARTICLES

Couplings of gauge KK's ...from profiles ($\xi \equiv \sqrt{\log (\text{UV/IR})} \sim \sqrt{\log (M_{Pl}/\text{TeV})} \sim 5$) Gherghetta, Pomarol; Davoudiasl, Hewett, Rizzo

Model-independent approach: Contino, Kramer, Son, Sundrum; Giudice, Grojean, Pomarol, Rattazzi

Composite/Warped SM @ LHC: 3 strikes...

Production suppressed: weak coupling to constituents of proton

Decays to top/W/Z/Higgs: golden channels (leptons, photons) suppressed

Strong coupling - broad resonances

....but not out!

KK gluon (and boosted tops)

(KA, Belyaev, Krupovnickas, Perez, Virzi)

(See also Lillie, Randall, Wang; Lillie, Shu, Tait; Guchait, Mahmoudi, Sridhar; Djouadi, Moreau, Singh; Baur, Orr; Bai, Han; Kumar, Tait, Vega-Morales; Evans, Luty ...+ talk by K. Kumar)

Production and Decay

Problem: collimation of tops

 \odot opening angle $\sim m_t/E \sim 0.1$

usual $\Delta R \stackrel{>}{\sim} 0.4$ between lepton and b-jet and 2 jets from W

Sterman, Sung, Virzi...+ experimental talks/notes)...

Summary of polarization asymmetry

SM QCD: equal LH and RH top quarks $rac{>} P_{LR} = 0$

Warped extra dimension: KK gluon coupling to LH and RH top quark different $rac{1}{2} P_{LR} \sim \pm O(1)$

Measure polarization of top quark by correlating direction of lepton in top quark rest frame with direction of boost of top quark in parton center-of-mass frame

Discovery for 4 TeV with 100 / fb

Sump" in differential cross-section (100 fb before 1% efficiency for 3 TeV)
Correlated with

 \odot Deviation in P_{LR} from SM

Differential cross-section

Polarization asymmetry

...DON'T FORGET BOOSTED W/Z!

KK Z

(KA, Davoudiasl, Gopalakrishna, Han, Huang, Perez, Si, Soni)

(See also Djouadi, Moreau, Singh)
Production and Decay

Decays to tops swamped by KK gluon

KK $Z \to W^+W^- \to l^+l'^-\nu\nu'$: clean, but...

cannot reconstruct WW invariant mass

neutrinos back-to-back

KK $Z \to W^+W^- \to l^+\nu jj$: can reconstruct, but... • W + jet SM background

SOLUTION: JET MASS CUT (SEE ALSO SMITH, SKIBA; HOLDOM; BUTTERWORTH, COX, FORSHAW; BUTTERWORTH, ELLIS, RAKLEV; BUTTERWORTH, DAVISON, RUBIN, SALAM...+ EXPERIMENTAL TALKS/NOTES)

Results for KK Z

Reach of 2 (3) TeV for 100/fb (1000/fb) from semileptonic WW

 \odot Similar from KK $Z \rightarrow Zh$

BOOSTED TOP (VETO) AND W/Z!

KK W

(KA, Gopalakrishna, Han, Huang, Soni)

 $KK W \to WZ \to l^+ \nu \text{ (or } l^+ l^-) + \text{ jets}$ (like KK Z)

Decays to top + bottom:
 KK gluon background
 (boosted top!)

••• REDUCIBLE BY JET MASS CUT (BOOSTED TOP VETO!)

"ORIGINAL" RS1: BRANEWORLD Golden decays: KK graviton $\rightarrow l^+l^-$, $\gamma\gamma$ (Davoudiasl, Hewett, Rizzo)

CF. SM (- HIGGS) IN THE BULK

KK graviton $\rightarrow l^+ l \chi \gamma \gamma$ $\rightarrow t\bar{t}, WW \text{ (boosted)}$

+ KK gluon, W, Z, γ

SIGNALS FOR A *CLASS* OF MODELS, *NOT* JUST WARPED EXTRA DIMENSION

Top quark and Higgs (longitudinal W/Z) "special": mechanism of electroweak symmetry breaking

couple strongly to *new* particles

• New particles couple singly to SM: precision tests $\Rightarrow \sim$ a few TeV

Resonance production: decays to top and H/W/Z(highly boosted!)

DETECTION OF BOOSTED ($\gamma \approx 10$) **TOP**, W, Z, H...

(More) Studies needed...

Detector-level simulation of m_{bl} , substructure, jet mass...

KKPARITY IN WARPED EXTRADIMENSION

KK parity in flat universal extra dimensions (UED), T-parity in Little Higgs

KK PARITY IN UED

Reflection about midpoint

NO KK PARITY IN SINGLE ÅDS SLICE

Warp factor not symmetric about midpoint (cf. flat metric)

JOIN 2 ADS SLICES

(KA, FALKOWSKI, LOW, SERVANT)

(SEE ALSO THALER, YAVIN; PANICO, PONTON, SANTIAGO, SERONE; CSAKI, HEINONEN, PERELSTEIN, SPETHMANN: DOUBLE FIELDS IN SINGLE SLICE)

* KK parity interchanges 2 slices

Conclusions

can't wait for LHC to start!
keep open mind...

well-motivated models with a few TeV broad resonances decaying into highly boosted (collimated) top/W/Z/Higgs!

Back-up slides

Warped Gauge-Higgs unification (Contino, Nomura, Pomarol)

4D scalar

Higgs from 5D gauge fields: $A_M = A_\mu + A_5$

Higgs localized near TeV brane, potential from loops (calculable): heavy top $rightarrow m_H^2 < 0$ (KA, Contino, Pomarol...)

Quark flavor constraints for anarchy

Non-universality in coupling to gauge KK \propto 4D Yukawa: analog of GIM (Gherghetta, Pomarol; Huber, Shafi; KA, Perez, Soni)

...but...

 ~ O(20) TeV from
 ^{\epsilon K} for Higgs on TeV brane, tree-level matching (Csaki, Falkowski, Weiler; see also Fitzpatrick, Perez, Randall; Davidson, Isidori, Uhlig)

...but...

Model dependence (cf. EW precision tests)...

O(1) room" in each of profile for Higgs (size of 5D Yukawa), loop-level 5D gauge coupling (not so relevant for EW precision tests)...

SM uncertainties: m_d, s; matrix elements (different Lorentz structure than SM); also for <u>lepton</u> flavor violation: conversion in <u>nuclei!</u>

Flavor symmetries

Mixing angles smaller by a few vs. "natural" size (ratio of profiles) ~ 3 TeV allowed (even if ~20 TeV for natural size) ~ (mild) tuning (Blanke, Buras, Duling, Gori, Weiler)?

....or...

Ilavor symmetries for naturally small mixing angles: relate (same as in anarchic) 5D mass to 5D Yukawas (still anarchic) (Fitzpatrick, Perez, Randall; Csaki, Grossman, Perez, Surujon, Weiler) Lepton sector: anarchy with large LH charged lepton mixing See-saw model (Huber, Shafi): Dirac masses (charged leptons, quarks) + Majorana masses for RH neutrinos on UV brane

- Large LH neutrino mixings non-hierarchical profiles
 for LH leptons (cf. hierarchical for quarks with anarchy)???
- o profiles as "input" (fit to data)
- The charged lepton mixing large ~ 10 TeV from lepton flavor violation with minimal $SU(2)_R$ representations (Perez, Randall; KA)

 ~ O(5) TeV KK scale using non-minimal choice of representations (custodial symmetry: KA)

Lepton sector: flavor symmetries

non-hierarchical profiles for LH leptons (cf. quarks) flavor symmetry (Perez, Randall; Csaki, Delaunay, Grojean, Grossman)

Flavor symmetries suppress flavor violation (see also Chen, Yu)

Lepton sector: decoupling charged LH lepton mixing from neutrinos

Dirac masses (KA, Okui, Sundrum) from overlap near Planck brane: smallness from Higgs profile
 LH lepton profiles small/hierarchical near TeV brane, large/ non-hierarchical near Planck brane
 ~O(5) TeV KK scale (with minimal representations: KA, Blechman, Petriello)

 non-minimal representations (KA): LH lepton "made of" 2 components (one for neutrino mass; other for charged)

with different profiles + custodial symmetry

 \oslash KK scale ~ O(3) TeV

Cannot suppress S with non-AdS

Hirn, Sanz: general Higgs profile and warp factor

Pathology: vev² < 0 to suppress S (KA, Csaki, Grojean, Reece; see also McGuirk, Shiu, Zurek) "Running" of Gauge Coupling (Pomarol; Randall, Schwartz; Goldberger, Rothstein; KA, Delgado, Sundrum; Choi, Kim; Contino, Creminelli, Trincherini)

 Subtle: gauge bosons flat >loops span extra dimension, sensitive to Planck and TeV cut-off scales (AdS/CFT more intuitive)

Gauge boson loops: non-universal; effectively cut-off at high scale (a la SM)

Fermion loops non-universal (unlike SM): t_R & H (near TeV brane) loop cut-off at TeV; other fermion (near UV brane) loops cut-off at high scale

LO unification: magic of β -function: SM $-2t_R - H$

(KA, Contino, Sundrum)

($2^{nd} - t_R$: running due to light GUT partners)

Unification in CFT picture

- Global unified symmetry for CFT
 LO running of SM gauge couplings from CFT loops universal
- Composite t_R and H \Rightarrow above TeV, replace running due to t_R and H by CFT
- Add external fermions to make composite GUT partners of t_R heavy

Assumptions

Bulk unified gauge symmetry CFT has global unified symmetry

Localization parameter (bulk mass) of t_R: unification improved relative to SM in entire range (preferred by precision data); precision unification for sizable range

NLO precision \sim SUSY

Signals

Complete GUT multiplets at few TeV scale (KK gauge bosons and fermions)

Iight GUT partners of t_R for precision unification

Stable particle from Proton stability (KA, Servant)

Orbifold GUT's (GUT breaking on boundary: Hall, Nomura): quark and lepton zero-modes from different multiplets; assign multiplets baryon-number of zero-mode (split multiplets for proton stability)

Extra particles (no zero-modes) are "exotic" ("wrong" combination of B and color: SM have right...)

Exotic ν'_R partner of t_R as WIMP dark matter: I

• Annihilation:

Exotic ν'_R partner of t_R as WIMP dark matter: II

Direct detection (small coupling to Z):

Polarization asymmetry: definition

Positron in direction of top spin "forward-backward" asymmetry

$$P_{LR} \equiv 2 \times \frac{N_+ - N_-}{N_+ + N_-}$$

RH (LH) top: $P_{LR} = \pm 1$

Polarization asymmetry: SM vs. Warped

SM: $P_{LR} \sim g_Z^4/g_{QCD}^4$ and < 0 (pure QCD gives 0)

VS.

O(1) for warped extra dimension (KK gluon decays to RH or LH top)

KK gluon decays to KK tops

 KK tops (1 TeV) not boosted, decay into Wb (well-separated, but 2 jets from W still collimated) (Carena, Medina, Panes, Shah, Wagner)

Other Signals

- KK graviton decays to tops, WW, ZZ: 2 to 3 TeV with 100–1000 /fb (Fitzpatrick, Kaplan, Randall, Wang; KA, Davoudiasl, Perez, Soni; Antipin, Atwood, Soni; Antipin, Soni)
- Heavy KK fermions: via KK gluon (Davoudiasl, Rizzo, Soni); via longitudinal W/Z-bottom fusion (a la in little Higgs)?
- Light KK fermions (Dennis, Karagoz Unel, Servant, Tseng; Contino, Servant; Atre, Carena, Han, Santiago: see talk by A. Atre)
- \odot Virtual effects: $t \rightarrow cZ$ with BR of 10^{-5} (KA, Perez, Soni)
- (+ low-energy flavor violation + DM direct detection..)

Motivation and Spectrum for warped KK parity

Odd KK's at 1 TeV, cut off Higgs mass
Even KK's at few TeV pass precision tests
Lightest KK particle (LKP) stable: Dark Matter

("Complete" models: flavor, custodial isospin...to be done)

Phenomenology

Ø Odd KK's pair-produced

Large Brane Kinetic terms
 KK Z Dark Matter
 (cf. KK photon in UED)

