First Observation of Single Top

Quark Production at DØ

Monica Pangilinan

Brown University

on behalf of

Pheno Symposium 2009 May 12, 2009

Motivation

M. Pangilinan Pheno Symposium 2009

s channel

Single top cross sections:

Kidonakis and Vogt, PRD 68, 114014 (2003) for m, =170 GeV

- Investigate Wtb coupling
 - Direct measurement of |V_{th}
 - Checks unitarity of CKM matrix
 - Anomalous Wtb couplings
- Study top quark properties
 - Polarization, lifetime, decay width

- Window to new physics
 - s channel: charged Higgs, heavy W'
 - s+t channel: flavor changing neutral currents
 - 4th quark generation?

Tevatron and DØ Detector M. Pangilinan Pheno Symposium 2009

- This analysis uses 2.3 fb⁻¹ data
- 5.81 fb⁻¹ data on tape thanks to the Tevatron accelerator division
- DØ detector
 - a silicon and fiber tracker in 2T superconducting solenoid
 - Liquid Argon/Uranium calorimeter
 - Muon system in 1.8T toroidal magnetic field

Event Selection

1 isolated electron or muon Missing transverse energy At least one b-tagged jet and at least one •Single top:

Multijets:

Sample divided by (Runlla or IIb), (e or μ), (1 or 2 b-tags), (2,3,4 jets)

g

000

more jet

W+jets:

- Shapes from ALPGEN
- Normalization and
- heavy flavor fractions from data

t-tbar:

- Shapes from ALPGEN
- Normalized to $\sigma_{_{NNLO}} = 7.91 \text{ pb}$

Dibosons (Pythia) and Z+jets (ALPGEN) but minor backgrounds

misidentified lepton

from data where events have a

CompHEP – SingleTop

g

00000

M. Pangilinan Pheno Symposium 2009

iet

M. Pangilinan Pheno Symposium 2009 Improvements to Event Selection

- Signal acceptance
 increased by 18% compared
 to 2006 evidence analysis
 (Phys. Rev. Lett. 98, 181802 (2007),
 Phys. Rev. D 78, 012005 (2008))
 - Logical OR of many trigger conditions
 - Looser jet eta and p_T cuts
 - Loosened the b-jet identification criteria for the 2 tag case

Event Yields in 2.3 fb ⁻¹ of DØ Data					
Source	2 jets	3 jets	4 jets		
s-channel tb	62 ± 9	24 ± 4	7 ± 2		
t-channel tqb	77 ± 10	39 ± 6	14 ± 3		
W+bb	678 ± 104	254 ± 39	73 ± 11		
W+cc	303 ± 48	130 ± 21	42 ± 7		
W+cj	435 ± 27	113 ± 7	24 ± 2		
W+jj	413 ± 26	140 ± 9	41 ± 3		
Z+jets	141 ± 33	54 ± 14	17 ± 5		
Dibosons	89 ± 11	32 ± 5	9 ± 2		
$t\bar{t} \rightarrow \ell \ell$	149 ± 23	105 ± 16	32 ± 6		
$t\bar{t} \rightarrow \ell + jets$	72 ± 13	331 ± 51	452 ± 66		
Multijets	196 ± 50	73 ± 17	30 ± 6		
Total prediction	2,615 ± 192	1,294 ± 107	742 ± 80		
Data	2,579	1,216	724		

Multivariate Techniques

- Boosted Decision Trees (BDT):
 - applies sequential cuts to events but keeps events that fail cuts
 - Cuts continue until not enough events or no more improvement
 - Boosting adds extra weight to misclassified events
 - 64 input variables used
- Bayesian Neural Networks (BNN):
 - A Neural Network is group of interconnected nodes that model complex relationships between inputs and outputs
 - Is an average over many neural networks -> avoids overtraining

M. Pangilinan

Pheno Symposium 2009

• 18 -28 variables used

- Matrix Element Analysis
 - Uses parton level information matrix elements to calculate a event probability density for signal and background
 - Uses all event information (4 momenta)

Multivariate Techniques

Boosted Decision Tree (BDT):

M. Pangilinan Pheno Symposium 2009

ents that fail cuts

atput

simprovement

• Bayesian Neur

- A Neural Ne model comp
- Is an average overtraining
- 18 -24 variables

Improvements to 2006 Analysis

- BDT/BNN: Added Jet Reconstruction and Top Reconstruction Variables
- •ME: Added more ME, $H_T = \Sigma_{\text{lepton}, \not \in T, jets} |E_T|$

divided sample

- Uses parton level information matrix elements to calculate a event probability density for signal and background
- Uses all event information (4 momenta)

Cross Check Samples

M. Pangilinan Pheno Symposium 2009

W+jets enriched sample: $H_{\tau} < 175$ GeV, 1 b-tag with 2 jets

and 3 jets for ME

M. Pangilinan Linearity Performance Check Pheno Symposium 2009

 fb^{-1} input Xsec = 3.46 pbMeasured Xsec = 3.48 ± 0.02 pb 8.000 pseudo-datasets with SM signal

nd background

Xsec measured using

of Pseudo-Datas

9 200

800

600

400

0 L 0

2

3

1

4 5

6

tb+tqb Cross Section

- Measure many cross sections with a specific input
- single top cross section using multivariate technique
- A Gaussian is fit for each input single top cross section and the mean used to generate response curve of the method 9

Cross Section Measurements

M. Pangilinan

Pheno Symposium 2009

Combination

M. Pangilinan Pheno Symposium 2009

- Can gain sensitivity by combining the 3 multivariate techniques
 - BNN/BDT correlation: 74%
 - ME/BDT correlation: 60%
 - ME/BNN correlation: 57%
- Another BNN was trained using the 3 multivariate techniques as inputs
- Expected sensitivity: 4.5 $\sigma\,$ vs highest multivariate sensitivity (BDT) 4.3 $\sigma\,$

Combination Results

M. Pangilinan Pheno Symposium 2009

Cross Section: 3.94 ± 0.88 pb p-value: 2.5×10^{-7} Significance: 5.03σ

Direct V_{tb} Measurement

M. Pangilinan Pheno Symposium 2009

$$\Gamma^{\mu}_{Wtb} = -\frac{g}{\sqrt{2}} \underbrace{V_{tb}}_{tb} \left\{ \gamma^{\mu} \left[f_1^L P_L + f_1^R P_R \right] - \frac{i\sigma^{\mu\nu}}{M_W} \left(p_t - p_b \right)_{\nu} \left[f_2^L P_L + f_2^R P_R \right] \right\}$$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

• V_{tb} can be measured directly without assumptions to number of quark families and CKM unitarity • Assume $|V_{td}|^2 + |V_{ts}|^2 << |V_{tb}|^2$ and a pure V -A and CP-conserving Wtb interaction $(f_1^R = f_2^L = f_2^R = 0)$ • The single top cross section is proportional to $|V_{tb}|^2$

so $|V_{tb}|$ is essentially measured as $\sqrt{\sigma_{meas}}/\sigma_{SM}$

Conclusion

M. Pangilinan Pheno Symposium 2009

"Observation of Single Top Quark Production" arXiv:0903.0850

DØ 2.3 fb ⁻¹ Single Top Results					
	Single Top	Significance			
Analysis Method	Cross Section	Expected	Measured		
Boosted Decision Trees	3.74 ^{+0.95} _{-0.79} pb	4.3 σ	4.6 σ		
Bayesian Neural Networks	4.70 ^{+1.18} _{-0.93} pb	4.1 σ	5.2 σ		
Matrix Elements	4.30 ^{+0.99} _{-1.20} pb	4.1 σ	4.9 σ		
Combination	$3.94\pm0.88~\textrm{pb}$	4.5 σ	5.0 σ		

$$\begin{aligned} |V_{tb} f_1^{L}| &= 1.07 \pm 0.12 \\ & \text{flat prior} \geq 0 \end{aligned}$$

 $\begin{array}{l} 0.78 < |V_{tb}| < 1 @ 95\% \ CL \\ 0 \leq flat \ prior \leq 1 \end{array}$

Uncertainties

Systematic Uncertainties		Systematic Unc	Systematic Uncertainties	
Ranked from Largest to Smallest Effect on Single Top Cross Section		Ranked from Largest to on Single Top Cro	Smallest Effect ss Section	
DØ 2.3 fb ^{−1}		DØ 2.3 f) ⁻¹	
Larger terms		Smaller terms		
<i>b</i> -ID tag-rate functions	(2.1–7.0)% (1-tag)	Monte Carlo statistics	(0.5–16.0)%	
(includes shape variations)	(9.0–11.4)% (2-tags)	Jet fragmentation	(0.7–4.0)%	
Jet energy scale (includes shape variations)	(1.1–13.1)% (signal) (0.1–2.1)% (bkad)	Branching fractions	1.5%	
W+jets beavy-flavor correction	13.7%	Z+jets heavy-flavor correction	13.7%	
Integrated luminosity	6.1%	Jet reconstruction and identification	1.0%	
	4.0%	Instantaneous luminosity correction	1.0%	
letticl, and final state rediction	4.076	Parton distribution functions (signal	3.0%	
Initial- and final-state radiation	(0.6-12.6)%	Z+jets theory cross sections	5.8%	
$t\bar{t}$ pairs theory cross section	2.0% 12.7%	W+jets and multijets normalization to data	(1.8–3.9)% (<i>W</i> +jets) (30–54)% (multijets)	
Lepton identification	2.5%	Diboson theory cross sections	5.8%	
Wbb/Wcc correction ratio	5%	Alpgen W+jets shape corrections	shape only	
Primary vertex selection	1.4%	Trigger	5%	

The total uncertainty on the single top cross section measured in this observation analysis is $\pm 22\%$. When we perform the calculation without including any systematics, it is 18% (i.e., this is the statistical uncertainty). Thus, the systematic component of the total cross section is approximately 13%.

Additional Uncertainties for Vtb

Additional
Systematic Uncertainties
for the IVtol MeasureetDØ 2.3 fb⁻¹For the tb+tqb theory cross sectionFor quark massAddition functionsFactorization scaleStrong coupling α_sObservation

Presentation of ME Discriminant

Variables Used

BDT – Jet Reconstruction

 $Width_n(jet2)$ $Width_n(jet4)$ $Width_{\phi}(jet4)$ $Width_n(tag1)$ $Width_n(light2)$ $Width_{\phi}(light2)$

BDT – Object Kinematics

 $p_T(\text{jet2})$ $p_T(jet3)$ $p_T(\text{jet4})$ $p_T(\text{tag1})$ $p_T(light2)$ $p_T(\text{notbest2})$ $p_T(lepton)$ ET $Q(\text{lepton}) \times \eta(\text{jet1})$ $Q(\text{lepton}) \times \eta(\text{jet2})$ $Q(\text{lepton}) \times \eta(\text{best})$ $Q(\text{lepton}) \times \eta(\text{light1})$ $Q(\text{lepton}) \times \eta(\text{light2})$

Centrality(alljets) H_T (alljets) H_T (alliets-tag1) H_T (alljets-best) $H_T(\text{jet1},\text{jet2})$ $H_T(\text{jet1}, \text{jet2}, \text{lepton}, \mathbb{E}_T)$ H_T (alljets, lepton, E_T) $H_T(\not\!\!\!E_T, \text{lepton})$ H(alljets-tag1)M(alliets)M(alljets-best)M(alljets-tag1)M(jet1,jet2)M(jet1,jet2,W)

M(jet3,jet4)

 $M_T(\text{jet1},\text{jet2})$

 $p_T(\text{jet1},\text{jet2})$

 $\sqrt{\hat{s}}$

 $M_T(W)$

BDT – Top Quark Reconstruction BDT – Event Kinematics M(W, best1) ("best" top mass) M(W, tag1) ("b-tagged" top mass) M(W, tag1, S2) (with $2^{\text{nd}} \nu$ solution) M(W, jet1)M(W, jet1, S2)M(W, jet2)M(W, jet2, S2)M(W, notbest2)M(W, notbest 2, S2) $M_{\rm top}^{\Delta M^{\rm min}}$ $M_{\rm top}^{\rm sig}$ $\Delta M_{\rm top}^{\rm min}$ Significance_{min} (M_{top})

BDT – Angular Correlations

 $\Delta R(\text{jet1},\text{jet2})$ $\Delta R(\text{jet1,lepton})$ $\Delta R(\text{tag1,lepton})$ $\Delta R(\text{light1,lepton})$ $\Delta \phi(\text{lepton}, \not\!\!\!E_T)$ cos(best,lepton)_{besttop} $\cos(\text{best,notbest})_{\text{besttop}}$ $\cos(\text{jet1}, \text{lepton})_{\text{btaggedtop}}$ $\cos(tag1, lepton)_{btaggedtop}$ $\cos(\text{lepton}_{\text{besttop}}, \text{besttop}_{\text{CMframe}})$ $\cos(\text{lepton}_{\text{btaggedtop}}, \text{btaggedtop}_{\text{CMframe}})$ $\cos(tag1, lepton)_{btaggedtop}$ $\cos(\operatorname{lepton}, Q(\operatorname{lepton}) \times z)_{\operatorname{besttop}}$

Best Variables to Separate Single Top from W+Jets

DØ 2.3 fb⁻¹ Analysis ₿Ţ **Object kinematics**

	$\rho_{T}(\text{jet} Z)$
	ρ ₇ ^{rel} (jet1,tag-μ)
	E(light1)
Event kinematics	M(jet1,jet2)
	<i>Μ_τ</i> (W)
	H_{T} (lepton, $\#_{T}$,jet1,jet2)
	H ₇ (jet1,jet2)
	H_{τ} (lepton, $\not{\!\! E}_{\tau}$)
Jet reconstruction	Width _e (jet2)
	Width _n (jet2)
Top quark reconstruction	M _{top} (W,tag1)
	$\Delta M_{\rm top}^{\rm min}$
	M _{top} (W,tag1,S2)
Angular correlations	cos(light1,lepton) _{btaggedtop}
	$\Delta \phi$ (lepton, $\not{\!\! E}_T$)
	Q(lepton) x η(light1)

Best Variables to Separate Single Top from Top Pairs

DØ 2.3 fb ⁻¹ Analysis		
Object kinematics	<i>pT</i> (notbest2)	
	<i>pT</i> (jet4)	
	pT(light2)	
Event kinematics	M(alljets-tag1)	
	Centrality(alljets)	
	M(alljets-best1)	
	H_{τ} (alljets-tag1)	
	H_{τ} (lepton, $\not{\!\!\! E}_{\tau}$, alljets)	
	M(alljets)	
Jet reconstruction	Width _n (jet4)	
	Width _e (jet4)	
	Width _o (jet2)	
Angular correlations	cos(lepton _{btaggedtop} , btaggedtop _{CMframe})	
	Q(lepton) x η(light1)	
	Δ <i>R</i> (jet1,jet2)	

CDF Result

CDF Discovery: ArXiv:0903.0885

 $\sigma_{NLO}[\dagger] = 0.88 \pm 0.11 \text{ pb} = 1.98 \pm 0.25 \text{ pb} (m_t = 175 \text{ GeV})$ [\dagger] Z. Sullivan, Phys. Rev. D 70, 114012 (2004)