

A Light Scalar as the Messenger of Electroweak and Flavor Symmetry Breaking

Zeke Murdock Oklahoma State University (with J.D. Lykken and S. Nandi) arXiv:0812.1826 [hep-ph] Published in Phys Rev D

Outline

- Introduction
- Model and Formalism
 - Model
 - Fermion Masses and CKM Mixing
 - Yukawa Interactions, FCNC, Higgs Sector, and Z'

• Phenomenological Implications

- Constraints from existing Experiments
- New Physics Signals for the LHC
- Conclusions

Introduction

- What are some new physics possibilities at the TeV scale?
 - SUSY: new superpartners and Higgs at the TeV scale
 - Extra Dimensions: new KK Excitations at the TeV Scale
 - Extra U(1): new Z' at the TeV Scale
- These are all theory motivated.

- Experimental Clues so far:
 - Charged fermion masses are highly hierarchical
 - Quark mixing angles are hierarchical
 - FCNC processes are strongly suppressed
- What sort of new physics at LHC can explain these?
- In this work, we explore one such possibility

Introduction (SM)

 $m_{a_i} = y_{a_i} v / \sqrt{2}$ o In the Standard Model: $L_{Y} = y_{d_{i}}\overline{q}_{iL}d_{iR}H + y_{u_{i}}\overline{q}_{iL}u_{iR}H + h.c.$

$$m_t \sim 172 \ GeV \implies y_t \sim 1$$

- Top quark is directly connected to EW symmetry breaking sector
- o Has dimension 4 Yukawa interaction

 $y_b, y_c, y_s, y_d, y_u, y_e, y_u, y_\tau << 1$

- o Probably <u>not</u> directly connected to EW symmetry breaking sector
- o They may be connected via some Z. Murdock, Pheno 09 messenger fields 4/15

Introduction (Model)

- We know FCNC interactions among quarks are highly suppressed:
 - This hints at the existence of some flavor symmetry
- If we let all SM fermions except q_{3L}, u_{3R}, H carry nonzero flavor charges
 - This prevents dimension 4 Yukawa couplings for the light quarks with H
- What sort of additional fields do we need to achieve this scenario?
 - Vector-like quarks and leptons at the TeV scale, and new flavor symmetries, ${\rm U(1)}_{\rm F}$
- What are the possible choices for messenger fields?
 - A SM singlet complex Higgs field, S with an extra U(1) $_{\rm S}$ symmetry
- New Physics -> Q, S, Z'

Model and Formalism

- $\circ~$ Extend SM gauge symmetry by a U(1)_S local symmetry and U(1)_F global symmetry
 - All SM fermions are <u>neutral</u> with respect to U(1)_s
 - All SM fermions, except q_{3L} and u_{3R} , are charged with respect to $U(1)_F$
- Flavor charges of SM fermions are such that only the top quark has dimension 4 Yukawa interactions
- $\circ~$ S acquires a VEV at the EW scale -> breaks U(1)_S spontaneously
- $\circ~$ Pseudoscalar component of S is eaten to give mass to U(1)_S gauge boson, Z'
- S acts as the messenger of both flavor sym. breaking as well as EW sym. breaking
- $\circ~$ There are additional vector-like fermions at the TeV scale, charged under U(1)_S and U(1)_F

After integrating out heavy vector-like fermions, the Yukawa interactions of the light fermions, appear as higher dimension operators

UV Completion

Integrating out the heavy fermions in the tree level diagram composed from the couplings:

$$f_{2}\overline{q}_{3L}Q_{1R}S + f_{9}\overline{Q}_{1R}Q_{1L}F + f_{10}\overline{Q}_{1L}D_{1R}H + M\overline{D}_{1R}D_{1L} + f_{3}\overline{D}_{1L}d_{3R}S^{\dagger}$$

Similarly for other interactions

Model Lagrangian

$$\begin{split} L_{Y} &= h_{33}^{u}\overline{q}_{_{3L}}u_{3R}\widetilde{H} \\ &+ \left(\frac{S^{\dagger}S}{M^{2}}\right) \left[h_{33}^{d}\overline{q}_{_{3L}}d_{3R}H + h_{22}^{u}\overline{q}_{_{2L}}u_{2R}\widetilde{H} + h_{23}^{u}\overline{q}_{_{2L}}u_{3R}\widetilde{H} + h_{32}^{u}\overline{q}_{_{3L}}u_{2R}\widetilde{H}\right] \\ &+ \left(\frac{S^{\dagger}S}{M^{2}}\right)^{2} \left[h_{22}^{d}\overline{q}_{_{2L}}d_{2R}H + h_{23}^{d}\overline{q}_{_{2L}}d_{3R}H + h_{32}^{d}\overline{q}_{_{3L}}d_{2R}H + h_{12}^{u}\overline{q}_{_{1L}}u_{2R}\widetilde{H}\right] \\ &+ \left(\frac{S^{\dagger}S}{M^{2}}\right)^{2} \left[h_{21}^{d}\overline{q}_{_{2L}}u_{1R}\widetilde{H} + h_{13}^{u}\overline{q}_{_{1L}}u_{3R}\widetilde{H} + h_{31}^{u}\overline{q}_{_{3L}}u_{1R}\widetilde{H} \\ &+ \left(\frac{S^{\dagger}S}{M^{2}}\right)^{3} \left[h_{11}^{u}\overline{q}_{_{1L}}u_{1R}\widetilde{H} + h_{11}^{d}\overline{q}_{_{1L}}d_{1R}H + h_{12}^{d}\overline{q}_{_{1L}}d_{2R}H + \\ &h_{21}^{d}\overline{q}_{_{2L}}d_{1R}H + h_{13}^{d}\overline{q}_{_{1L}}d_{3R}H + h_{31}^{d}\overline{q}_{_{3L}}d_{1R}H \right] + h.c. \end{split}$$

All coupings :
$$h_{ij}^u$$
, $h_{ij}^d \sim O(1)$

Z. Murdock, Pheno 09

Fit to Fermion Masses & CKM mixings

$$H = \begin{pmatrix} 0 \\ h/\sqrt{2} + v \end{pmatrix}, \quad S = (s/\sqrt{2} + v_s) \qquad M_D = \begin{pmatrix} h_{11}^d \varepsilon^6 & h_{12}^d \varepsilon^6 & h_{13}^d \varepsilon^6 \\ h_{21}^d \varepsilon^6 & h_{22}^d \varepsilon^4 & h_{23}^d \varepsilon^4 \\ h_{31}^d \varepsilon^6 & h_{32}^d \varepsilon^4 & h_{33}^d \varepsilon^2 \end{pmatrix} v$$

$$v \sim 174 \text{ GeV}, \quad \varepsilon = \frac{v_s}{M}, \quad \beta = \frac{v}{M} \qquad M_D = \begin{pmatrix} h_{11}^u \varepsilon^6 & h_{12}^u \varepsilon^4 & h_{33}^d \varepsilon^2 \\ h_{31}^u \varepsilon^6 & h_{32}^u \varepsilon^4 & h_{33}^d \varepsilon^2 \end{pmatrix} v$$

$$h^0 = h \cos \theta + s \sin \theta \qquad M_U = \begin{pmatrix} h_{11}^u \varepsilon^6 & h_{12}^u \varepsilon^4 & h_{13}^u \varepsilon^4 \\ h_{21}^u \varepsilon^4 & h_{22}^u \varepsilon^2 & h_{23}^u \varepsilon^2 \\ h_{31}^u \varepsilon^4 & h_{32}^u \varepsilon^2 & h_{33}^u \end{pmatrix} v$$

Fit to Fermion Masses & CKM mixings

To leading order in
$$\varepsilon$$
:
 $(m_{t}, m_{c}, m_{u}) \cong \left(\left| h_{33}^{u} \right|, \left| h_{22}^{u} \right| \varepsilon^{2}, \left| h_{11}^{u} - \frac{h_{12}^{u} h_{21}^{u}}{h_{22}^{u}} \right| \varepsilon^{6} \right) v$
 $(m_{t}, m_{s}, m_{d}) \cong \left(\left| h_{33}^{d} \right| \varepsilon^{2}, \left| h_{22}^{d} \right| \varepsilon^{4}, \left| h_{11}^{d} \right| \varepsilon^{6} \right) v$
 $(m_{\tau}, m_{\mu}, m_{e}) \cong \left(\left| h_{33}^{d} \right| \varepsilon^{2}, \left| h_{22}^{d} \right| \varepsilon^{4}, \left| h_{11}^{d} \right| \varepsilon^{6} \right) v$
 $V_{ub} |\cong \left| \frac{h_{13}^{d}}{h_{33}^{d}} - \frac{h_{12}^{u}}{h_{23}^{d}} \right| \varepsilon^{2}$
 $(m_{\tau}, m_{\mu}, m_{e}) \cong \left(\left| h_{33}^{d} \right| \varepsilon^{2}, \left| h_{22}^{e} \right| \varepsilon^{4}, \left| h_{11}^{e} \right| \varepsilon^{6} \right) v$
 $V_{ub} |\cong \left| \frac{h_{13}^{d}}{h_{33}^{d}} - \frac{h_{12}^{u} h_{23}^{d}}{h_{23}^{d}} - \frac{h_{13}^{u}}{h_{23}^{d}} \right| \varepsilon^{2}$
With $\varepsilon \approx 1/6$ Σ , a coord fit is obtained for:

With $\epsilon \sim$ 1/6.5, a good fit is obtained for:

$$\begin{cases} \left| h_{33}^{u} \right|, \left| h_{22}^{u} \right|, \left| h_{11}^{u} - \frac{h_{12}^{u} h_{21}^{u}}{h_{22}^{u}} \right| \\ \left| k_{33}^{d} \right|, \left| h_{22}^{d} \right|, \left| h_{11}^{d} \right| \\ \right| = \{ 0.68, 0.77, 1.65 \} \\ \left| h_{33}^{\ell} \right|, \left| h_{22}^{\ell} \right|, \left| h_{11}^{\ell} \right| \\ \right| = \{ 0.42, 1.06, 0.21 \} \\ \end{cases}$$

Z. Murdock, Pheno 09

FCNC: K-Kbar and D-Dbar mixing

- $\circ \Delta m_{K} \sim 10^{-16} 10^{-17} \text{ GeV}$ for $m_{S} \sim 100 \text{ GeV}$
- $\circ \Delta m_{K(expt)} = 3.5 * 10^{-15} \, \text{GeV}$
- Diagram goes as $1/m_s^4$
- So S cannot be much smaller than 100 GeV

- o $\Delta m_D \sim 10^{-14}$ GeV for $m_S \sim 100$ GeV
- o $\Delta m_{D(expt)} = 1.6 * 10^{-14} \text{ GeV}$
- o β cannot be much larger than ε
- So S cannot be much smaller than 100 GeV

New Physics Signals at the LHC

• New particles in the Model:

- A scalar Higgs, s, m_s>100 GeV
- An extra gauge boson, Z', can be very light
- Heavy vector-like quarks and leptons at the TeV scale
- Without mixing, coupling of h⁰ to SM fermions are identical to that in SM

• Higgs Decays:

- Because of the flavor dependence of the s⁰ Yukawa couplings and mixing in the mass eigenstates, BR for h⁰ to various final states is altered substantially.
- BR figures for $\theta = 0^{\circ}$, 20°, 26°, 40°
- For $\theta = 0^{\circ}$, BR's are the same as in the SM
- For all plots, $m_s = 100$ GeV and $v_s/v = 1$

Z. Murdock, Pheno 09

WW and yy modes

$\circ h \rightarrow \gamma \gamma$

- For $\theta = 20^{\circ}$ and 26°, gg, $\gamma\gamma$ BR's enhanced substantially compared to SM
- For a light Higgs, m_h~115 GeV, the usually dominant bb mode is highly suppressed
- γγ mode is enhanced by a factor of 10 compared to SM
- Potential discovery of the Higgs via this mode at the LHC

o h→WW

- In SM, h→bb and h→WW^{*} crossover occurs at m_h ~135 GeV
- In our model for θ=20° (for example) this crossover takes place sooner (~110 GeV).
- As a result, Tevatron experiments will be more sensitive to a lower mass range of Higgs than in SM

Conclusions

- Presented a TeV scale model of flavor
- Only top quark directly participates in EW symmetry breaking
- All lighter quarks participate via a messenger field, a complex scalar, S
- Fermion masses and mixings are reproduced by breaking of a flavor symmetry at the TeV scale
- Yukawa couplings are all O(1)
- New Physics:
 - A singlet scalar S, light Z', and vector-like fermions (TeV)
 - Observable new signals at the LHC for Higgs discovery, Z' and TeV scale vector-like fermions

Backup Slides

Yukawa Interaction and FCNC

$$\begin{split} \sqrt{2}Y_{D}^{H} &= \begin{pmatrix} h_{11}^{d}\varepsilon^{6} & h_{12}^{d}\varepsilon^{6} & h_{13}^{d}\varepsilon^{6} \\ h_{21}^{d}\varepsilon^{6} & h_{22}^{d}\varepsilon^{4} & h_{23}^{d}\varepsilon^{4} \\ h_{31}^{d}\varepsilon^{6} & h_{32}^{d}\varepsilon^{4} & h_{33}^{d}\varepsilon^{2} \end{pmatrix} \qquad \sqrt{2}Y_{U}^{S} &= \begin{pmatrix} 6h_{11}^{u}\varepsilon^{5}\beta & 4h_{12}^{u}\varepsilon^{3}\beta & 4h_{13}^{u}\varepsilon^{3}\beta \\ 4h_{21}^{u}\varepsilon^{3}\beta & 2h_{22}^{u}\varepsilon\beta & 2h_{23}^{u}\varepsilon\beta \\ 4h_{31}^{u}\varepsilon^{3}\beta & 2h_{32}^{u}\varepsilon\beta & 2h_{23}^{u}\varepsilon\beta \\ 4h_{31}^{u}\varepsilon^{3}\beta & 2h_{32}^{u}\varepsilon\beta & 0 \end{pmatrix} \\ \sqrt{2}Y_{U}^{H} &= \begin{pmatrix} h_{11}^{u}\varepsilon^{6} & h_{12}^{u}\varepsilon^{4} & h_{13}^{u}\varepsilon^{4} \\ h_{21}^{u}\varepsilon^{4} & h_{22}^{u}\varepsilon^{2} & h_{23}^{u}\varepsilon^{2} \\ h_{31}^{u}\varepsilon^{4} & h_{32}^{u}\varepsilon^{2} & h_{33}^{u} \end{pmatrix} \qquad \sqrt{2}Y_{D}^{S} = \begin{pmatrix} 6h_{11}^{d}\varepsilon^{5}\beta & 6h_{12}^{d}\varepsilon^{5}\beta & 6h_{13}^{d}\varepsilon^{5}\beta \\ 6h_{21}^{d}\varepsilon^{5}\beta & 4h_{22}^{d}\varepsilon^{3}\beta & 4h_{23}^{d}\varepsilon^{3}\beta \\ 6h_{31}^{d}\varepsilon^{5}\beta & 4h_{32}^{d}\varepsilon^{3}\beta & 2h_{33}^{u}\varepsilon\beta \end{pmatrix} \end{split}$$

note: $Y_U^H \propto M_U$, $Y_D^H \propto M_D \Rightarrow$ No FCNC mediated by h^0

5/11/09

Z. Murdock, Pheno 09

17/15

Yukawa Interactions and FCNC

- Coupling of s^0 to fermions \Rightarrow flavor dependent
- No coupling of s⁰ to top; dominant coupling to bottom -> interesting phenomenological implications at the LHC
- For s⁰ the Yukawa interaction matrix
 Y is <u>not</u> proportional to M ->FCNC in s⁰ interactions

Other Rare processes

 $\circ~BR{\sim}10^{\text{--}14}\,\text{for}~m_S{\sim}100~\text{GeV}$

$$\circ$$
 BR_{expt}=6.9*10⁻⁹

• Similarly, contributions to:

$$K_L \to \mu e, K \to \pi v \overline{v}, \mu \to e \gamma, \mu \to 3e$$

• All orders of magnitude below experimental limits

Constraint on the mass of Z'

$$m_{Z'}^2 = 2g_E^2 v_s^2$$

- v_s~v, but g_E unknown and hence m_{Z'} is <u>not</u> determined in our model
- Accurate measurements of Z-properties at LEP $\rightarrow \\ \theta_{Z^{-}Z'} < 10^{-3} \text{ or smaller for } \\ m_{Z'} < 1TeV$

Z' can couple to SM fermions via 6 dimensional operators

$$L = \frac{1}{M^2} \overline{\psi}_L \sigma^{\mu\nu} \psi_R H Z'_{\mu\nu}$$

If M is in TeV scale, the Z' can be very light 1 $\,$

Q is heavy vector-like fermion at the TeV scale (M) \rightarrow

$$\theta_{Z-Z'} \sim \frac{g_Z g_{Z'}}{16\pi^2} \left(\frac{m_Z}{M}\right)^2 \sim 10^{-4}$$

Thus, <u>no</u> significant bound on Z' mass from LEP

Yukawa and Gauge Couplings (with mixing)

Interaction	Coupling	Interaction Coupling		
$s \rightarrow u \overline{u}$	$\frac{m_u}{v\sqrt{2}}\left(\sin\theta + \frac{6\cos\theta}{\alpha}\right)$	$h \rightarrow u \overline{u}$	$\frac{m_u}{v\sqrt{2}}\left(\cos\theta - \frac{6\sin\theta}{\alpha}\right)$	
$s \rightarrow d\overline{d}$	$\frac{m_d}{v\sqrt{2}}\left(\sin\theta + \frac{6\cos\theta}{\alpha}\right)$	$h \rightarrow d\overline{d}$	$\frac{m_d}{v\sqrt{2}}\left(\cos\theta - \frac{6\sin\theta}{\alpha}\right)$	
$s \rightarrow \mu^+ \mu^-$	$\frac{m_{\mu}}{v\sqrt{2}}\left(\sin\theta + \frac{4\cos\theta}{\alpha}\right)$	$h \rightarrow \mu^+ \mu^-$	$\frac{m_{\mu}}{v\sqrt{2}}\left(\cos\theta - \frac{4\sin\theta}{\alpha}\right)$	
$s \rightarrow s\bar{s}$	$\frac{m_s}{v\sqrt{2}}\left(\sin\theta + \frac{4\cos\theta}{\alpha}\right)$	$h \rightarrow s \overline{s}$	$\frac{m_s}{v\sqrt{2}}\left(\cos\theta - \frac{4\sin\theta}{\alpha}\right)$	
$s \rightarrow \tau^+ \tau^-$	$\frac{m_{\tau}}{v\sqrt{2}}\left(\sin\theta + \frac{2\cos\theta}{\alpha}\right)$	$h \rightarrow \tau^+ \tau^-$	$\frac{m_{\tau}}{v\sqrt{2}}\left(\cos\theta - \frac{2\sin\theta}{\alpha}\right)$	
$s \rightarrow c \overline{c}$	$\frac{m_c}{v\sqrt{2}}\left(\sin\theta + \frac{2\cos\theta}{\alpha}\right)$	$h \rightarrow c\overline{c}$	$\frac{m_c}{v\sqrt{2}} \left(\cos\theta - \frac{2\sin\theta}{\alpha}\right)$	
$s \rightarrow b\overline{b}$	$\frac{m_b}{v\sqrt{2}}\left(\sin\theta + \frac{2\cos\theta}{\alpha}\right)$	$h \rightarrow b\overline{b}$	$\frac{m_b}{v\sqrt{2}}\left(\cos\theta - \frac{2\sin\theta}{\alpha}\right)$	
$s \rightarrow t\bar{t}$	$\frac{m_t}{v\sqrt{2}}\sin\theta$	$h \rightarrow t\bar{t}$	$\frac{m_t}{v\sqrt{2}}\cos\theta$	
$s \rightarrow ZZ$	$\frac{m_Z^2}{v\sqrt{2}}\sin\theta$	$h \rightarrow ZZ$	$\frac{m_Z^2}{v\sqrt{2}}\cos\theta$	
$s \rightarrow Z'Z'$	$rac{m_{Z'}^2}{v\sqrt{2}}\cos heta$	$h \rightarrow Z'Z'$	$\frac{m_{Z'}^2}{v\sqrt{2}}\sin\theta$	
$s \rightarrow W^+ W^-$	$rac{m_W^2}{v\sqrt{2}}\sin heta$	$h \rightarrow W^+ W^-$	$\frac{m_W^2}{v\sqrt{2}}\cos\theta$	
	Z. Murdock, Pł	1en& 09 ^{ss}	λ_{hss}	21/15

$h \rightarrow 2x \text{ for } \theta = 0^{\circ}$

Z. Murdock, Pheno 09

22/15

$h \rightarrow 2x \text{ for } \theta = 20^{\circ}$

Z. Murdock, Pheno 09

h→2x for $θ=26^{\circ}$

Z. Murdock, Pheno 09

h \rightarrow 2x for θ =40°

Z. Murdock, Pheno 09

h \rightarrow 2x including h \rightarrow ss and z'z'

Z. Murdock, Pheno 09

Z. Murdock, Pheno 09

UV Completion (2 Generation)

• Symmetries: $SM + U(1)_S + U(1)_F$

- U(1)_S broken at EW scale, <S>
- U(1)_F broken at TeV scale, <F>
- 3 Generation model adds 3 $U(1)_F$
- \circ q_{3L}, u_{3R} have no U(1)_F charge
- All other quarks carry $U(1)_F$ charges
- \circ Heavy vector-like quarks are introduced: $Q_{iL,R},\,D_{iL,R},\,U_{iL,R}$
 - Direct Dirac mass terms for Q, U, D only if L and R carry same $U(1)_F$ charge

Table of Charge Assignments

Field	$U(1)_{\gamma}$	$U(1)_s$	$U(1)_F$	Field	$U(1)_{\gamma}$	$U(1)_s$	$U(1)_F$
H	1/2	0	0	Q_{3L}	1/6	-1	3
S	0	1	0	Q_{3R}	1/6	-1	2
F	0	0	1	Q_{4L}	1/6	2	2
q_{3L}	1/6	0	0	Q_{4R}	1/6	2	1
$q_{\scriptscriptstyle 2L}$	1/6	0	2	${U}_{1L}$	2/3	1	0
u_{3R}	2/3	0	0	U_{1R}	2/3	1	1
u_{2R}	2/3	0	3	U_{2L}	2/3	-1	3
d_{3R}	-1/3	0	-1	U_{2R}	2/3	-1	3
d_{2R}	-1/3	0	3	D_{1L}	-1/3	-1	-1
Q_{1L}	1/6	-1	-1	D_{1R}	-1/3	-1	-1
Q_{1R}	1/6	-1	0	D_{2L}	-1/3	2	3
Q_{2L}	1/6	1	1	D_{2R}	-1/3	2	2
Q_{2R}	1/6	1	2	$D_{3L,R}$	-1/3	1	3

UV Completion

With these charge assignments, only the following dimension 4 interactions involving SM particles are allowed:

$$\begin{split} L_Y &= f_1 \overline{q}_{3L} u_{3R} \widetilde{H} \\ &+ f_2 \overline{q}_{3L} Q_{1R} S + f_3 \overline{D}_{1L} d_{3R} S^\dagger + f_4 \overline{q}_{2L} Q_{2R} S^\dagger + f_5 \overline{U}_{1L} u_{3R} S \\ &+ f_6 \overline{q}_{2L} Q_{3R} S + f_7 \overline{U}_{2L} u_{2R} S^\dagger + f_8 \overline{D}_{3L} d_{2R} S + h.c. \end{split}$$

- o f_i 's are dimensionless couplings ~1
- Only top quark has direct EW sym breaking connection
- Other couplings involve S, but not H or F
- EW sym breaking is communicated to lighter quarks or leptons by S.

UV Completion

Dimension 4 couplings involving just the heavy vector-like fermions are:

$$\begin{split} L_{Y} &= f_{9}\overline{Q}_{1R}Q_{1L}F + f_{10}\overline{Q}_{1L}D_{1R}H + f_{11}\overline{Q}_{2R}Q_{2L}F + f_{12}\overline{Q}_{2L}U_{1R}\widetilde{H} + \\ & f_{13}\overline{U}_{1R}U_{1L}F + f_{14}\overline{Q}_{3R}Q_{3L}F^{\dagger} + f_{15}\overline{Q}_{3L}U_{2R}\widetilde{H} + f_{16}\overline{Q}_{2L}Q_{4R}S^{\dagger} + \\ & f_{17}\overline{Q}_{4L}Q_{2R}S + f_{18}\overline{Q}_{4R}Q_{4L}F^{\dagger} + f_{19}\overline{Q}_{4L}D_{2R}H + f_{20}\overline{D}_{2R}D_{2L}F^{\dagger} + \\ & f_{21}\overline{D}_{2L}D_{3R}S + M\overline{D}_{1R}D_{1L} + M\overline{D}_{3L}D_{3R} + M\overline{U}_{2R}U_{2L} + h.c. \end{split}$$