Prospects for top-prime quark discovery at the Tevatron

Rakhi Mahbubani arXiv:0902.0792

with Bogdan Dobrescu and Kyoungchul Kong

Introduction

- Motivation: it is likely that our first glimpse of new physics at colliders will be due to production of one or two new particles
- Colored particles have large production cross section
- We add to SM heavy vector color octet and heavy vectorlike quark
- Present in various models of BSM physics e.g. topcolor, warped and flat extra dimensions, technicolor
- Study Tevatron phenomenology in a generic renormalizable theory containing these particles, with minimal theoretical prejudice

Introduction

- In addition CDF search for QCD production of t' quarks (heavy top partner) decaying to Wj places limit on mass of 311 GeV
- Could the Tevatron sensitivity to t' quarks be improved?

(Answer: yes, if it is resonantly produced through schannel heavy gluon-prime)

SM + Vectorlike Quark

$$\begin{pmatrix} \overline{u}_L^3 & \overline{\chi}_L \end{pmatrix} \begin{pmatrix} \lambda_t v_H & 0 \\ M_0 & M_\chi \end{pmatrix} \begin{pmatrix} u_R^3 \\ \chi_R \end{pmatrix}$$

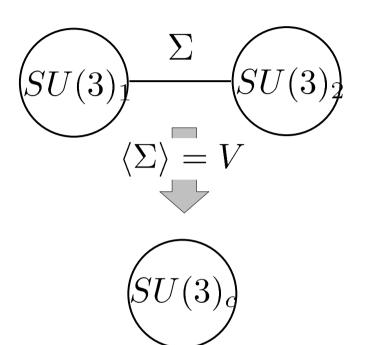
• This mass matrix can be diagonalized for the two mass eigenstates t and t', with LH mixing angle

$$s_L = \sqrt{\frac{\lambda_t v_H}{m_{t'}^2 - m_t^2}} = \frac{\lambda_t v_H}{m_{t'}} (1 + \cdots) \quad \text{for} \quad \lambda_t \gg 1$$

and related RH mixing angle, where $0 \le \theta_L, \ \theta_R \le \frac{\pi}{2}$

Top-prime interactions

With gauge bosons:


With Higgs:

$$\begin{aligned} t_L \bar{b}_L W^+_{\mu} &: \quad \frac{g}{\sqrt{2}} c_L \gamma^{\mu} \Rightarrow s_L < 0.57 \quad \text{(from single top)} \\ \bar{t}'_L \bar{b}_L W^+_{\mu} &: \quad \frac{g}{\sqrt{2}} s_L \gamma^{\mu} & \bar{t}_L t_R h^0 : \quad -\frac{m_t c_L^2}{\sqrt{2} v_H} \\ t_L \bar{t}_L Z_{\mu} &: \quad \frac{g}{c_W} \left(\frac{c_L^2}{2} - \frac{2}{3} s_W^2 \right) \gamma^{\mu} & \bar{t}'_L t'_R h^0 : \quad -\frac{m_t' s_L^2}{\sqrt{2} v_H} \\ t_L \bar{t}_L Z_{\mu} &: \quad \frac{g}{c_W} \left(\frac{c_L^2}{2} - \frac{2}{3} s_W^2 \right) \gamma^{\mu} & \bar{t}_L t'_R h^0 : \quad -\frac{m'_t s_L c_L}{\sqrt{2} v_H} \\ t_L \bar{t}'_L Z_{\mu} &: \quad \frac{g}{c_W} \frac{s_L c_L}{2} \gamma^{\mu} & \bar{t}'_L t_R h^0 : \quad -\frac{m_t s_L c_L}{\sqrt{2} v_H} \end{aligned}$$

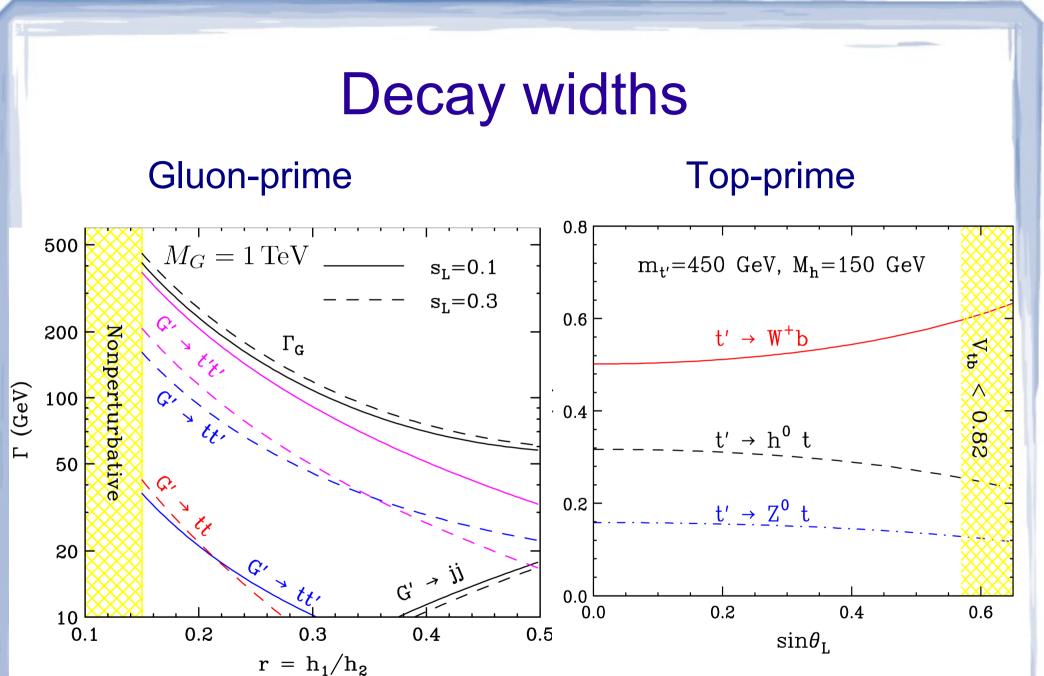
Z interactions with RH quarks same as SM

Extension of Color Sector

	$SU(3)_1$	$SU(3)_2$	$SU(2)_W$
q_L^i, u_R^i, d_R^i	3	1	2, 1, 1
$\chi_L,~\chi_R$	1	3	1, 1
\sum	3	$\overline{3}$	1

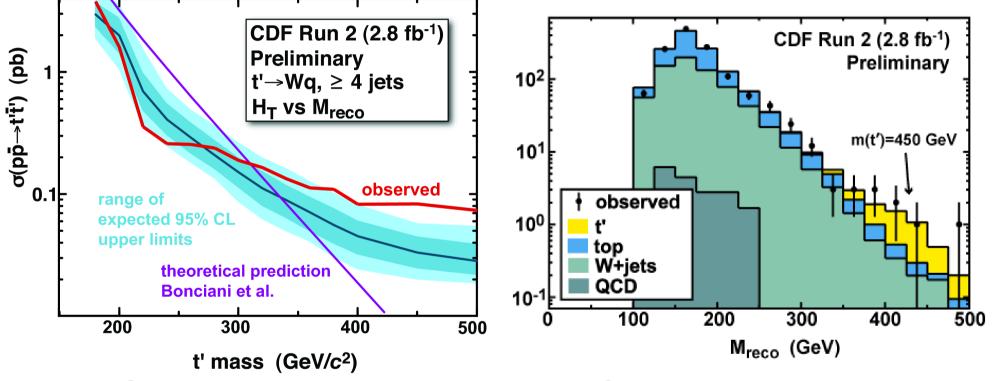
- Σ VEV results in mixing between two SU(3) gauge bosons
- Diagonalizing massless gluon, massive gluonprime.

Gluon-prime interactions

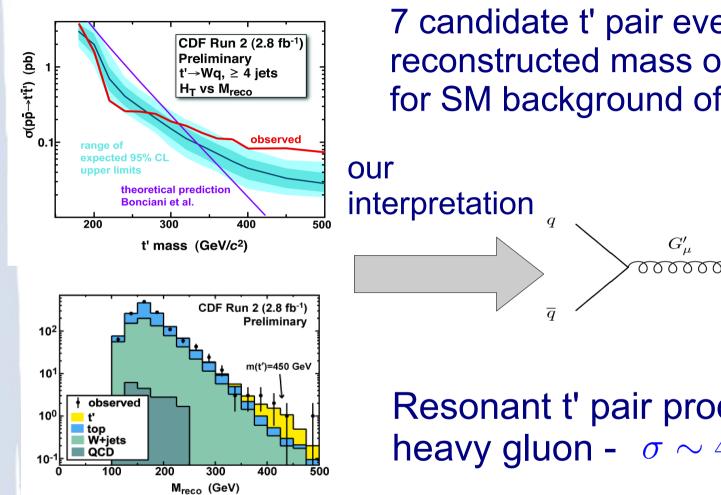

- Gluon interactions with quarks vector-like, with strength $g_s = \frac{h_1 h_2}{\sqrt{h_1^2 + h_2^2}}$
- Gluon-prime interactions with light quarks also vector-like with strength diluted by $r = h_1/h_2$, where $0.15 \le r \le 6.7$

0

$$\begin{split} \overline{t}tG'_{\mu}: & g_{s}\gamma_{\mu}\left(g_{L}P_{L}+g_{R}P_{R}\right) \qquad g_{L}=rc_{L}^{2}-\frac{s_{L}^{2}}{r}\\ \overline{t'}t'G'_{\mu}: & g_{s}\gamma^{\mu}\left(g''_{L}P_{L}+g''_{R}P_{R}\right) \qquad g''_{L}=rs_{L}^{2}-\frac{c_{L}^{2}}{r}\\ \overline{t}t'G'_{\mu}: & g_{s}\gamma^{\mu}\left(g'_{L}P_{L}+g'_{R}P_{R}\right) \qquad g'_{L}=\left(r+\frac{1}{r}\right)s_{L}c_{L} \end{split}$$


Gluon-prime interactions

- Gluon interactions with quarks vector-like, with strength
- Gluc 5 free parameters: h_2 , where 0.15 < r < 6.7 $\overline{t}tG'_{\mu}: \begin{array}{c} (m_{t'}, M_G, s_L, r, M_h) \\ g_{\mu} \gamma_{\mu} (m_{L'}, M_G, s_L, r, M_h) \end{array} \right) \xrightarrow{2}{}$ $\overline{t'}t'G'_{\mu}: g_s\gamma^{\mu}\left(g''_LP_L + g''_RP_R\right) \quad g''_L = rs_L^2 - \frac{c_L^2}{m}$ $\overline{t}t'G'_{\mu}: \quad g_s\gamma^{\mu}\left(g'_LP_L + g'_RP_R\right) \quad g'_L = \left(r + \frac{1}{r}\right)s_Lc_L$ Rakhi Mahbubani - Pheno 2009

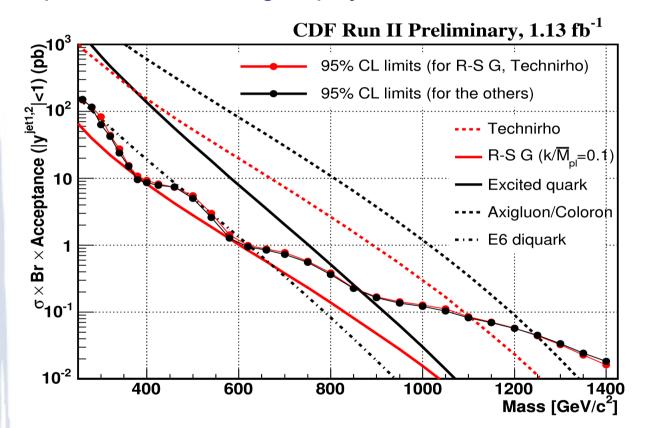


CDF search for massive t' quark

http://www-cdf.fnal.gov/physics/new/top/2008/tprop/Tprime2.8/public.html

Observed cross section order of magnitude larger than SM QCD production!

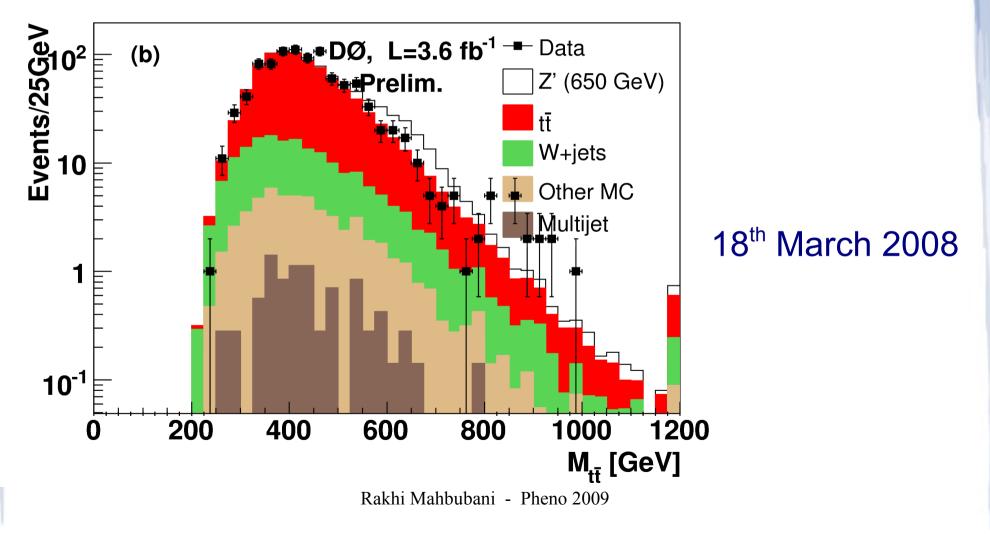
7 candidate t' pair events with reconstructed mass of 375-500 GeV, for SM background of 2.1 events

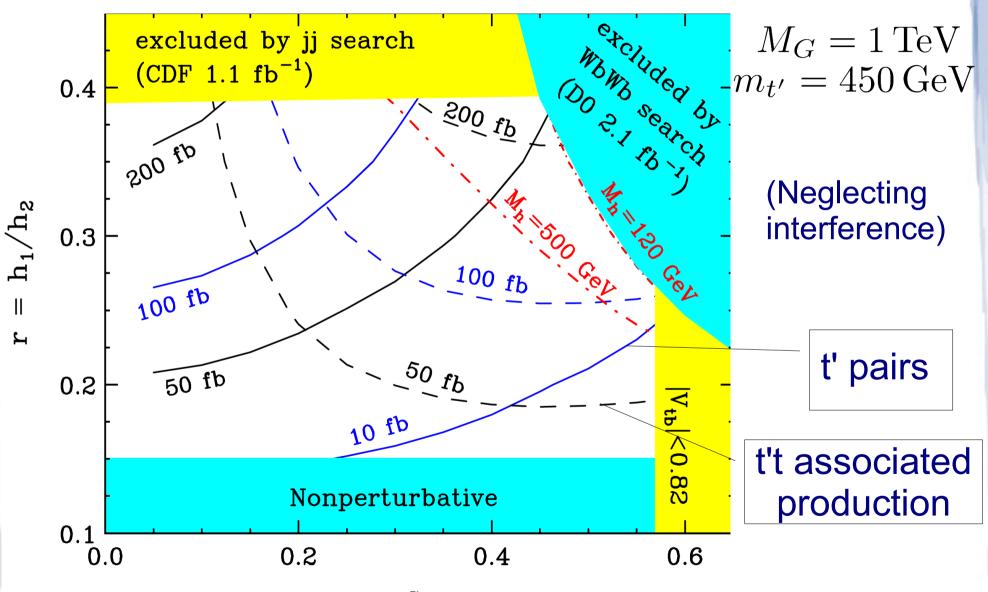

Resonant t' pair production through heavy gluon - $\sigma \sim 40 \text{ fb}$

W

 \bar{t}'

Limits from dijet searches


http://www-cdf.fnal.gov/physics/exotic/r2a/20080214.mjj_resonance_1b/8


Dijet cross section suppressed by relative factor of r^4

Limits from D0 (Wb)(Wb) search

http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/TOP/T83/

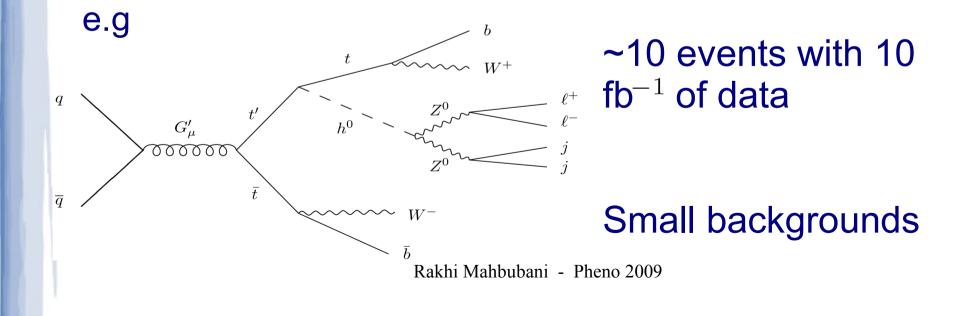
Production cross section

 s_L

Gluon-prime interactions

- Gluon interactions with quarks vector-like, with strength $g_s = \frac{h_1 h_2}{\sqrt{h_1^2 + h_2^2}}$
- Gluon-prime interactions with light quarks also vector-like with strength diluted by $r = h_1/h_2$, where $0.15 \le r \le 6.7$

0


$$\begin{split} \overline{t}tG'_{\mu}: & g_{s}\gamma_{\mu}\left(g_{L}P_{L}+g_{R}P_{R}\right) \qquad g_{L}=rc_{L}^{2}-\frac{s_{L}^{2}}{r}\\ \overline{t'}t'G'_{\mu}: & g_{s}\gamma^{\mu}\left(g''_{L}P_{L}+g''_{R}P_{R}\right) \qquad g''_{L}=rs_{L}^{2}-\frac{c_{L}^{2}}{r}\\ \overline{t}t'G'_{\mu}: & g_{s}\gamma^{\mu}\left(g'_{L}P_{L}+g'_{R}P_{R}\right) \qquad g'_{L}=\left(r+\frac{1}{r}\right)s_{L}c_{L} \end{split}$$

Other interesting channels

Associated t't production:

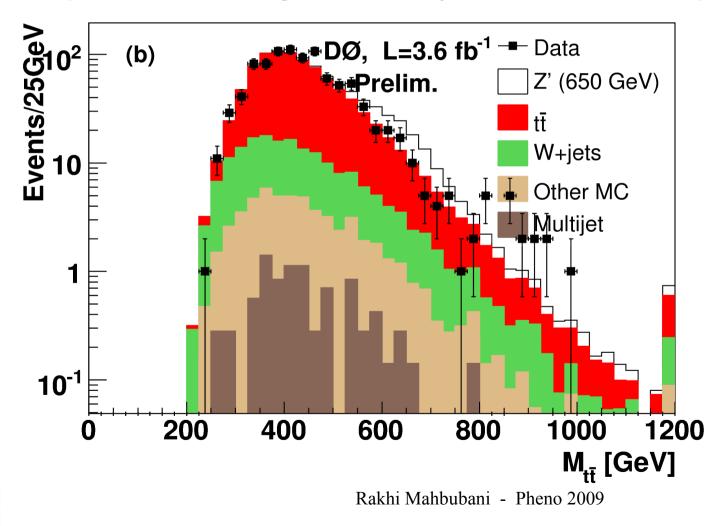
$$\overline{p}p \to G' \to \overline{t}t' \to \overline{t}(tZ), \ \overline{t}(th), \ \overline{t}(Wb)$$

Enhanced relative to SM production

Conclusion

- This simple, bottom-up model with two additional ingredients
 - vectorlike quark mixing with the SM top
 - produced resonantly through heavy vector color octets

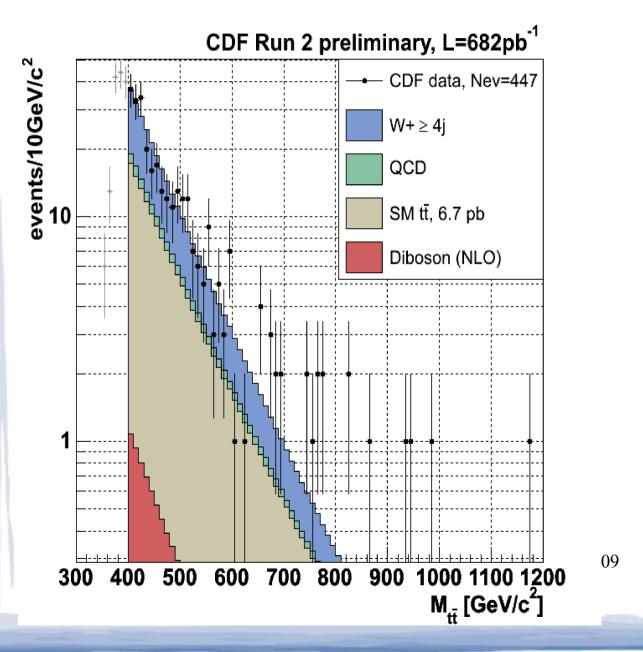
can yield a range of interesting phenomenology


Tevatron can be sensitive to t' with masses of up to 600 GeV

Could explain excess events in semileptonic channel

Backup Slides

Speculation on (Wb)(Wb) search


http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/TOP/T83/

17 events from 800-1000 GeV; expected SM background of 6.4

Potential gluonprime signature?

CDF X → top pair search

