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Tri-bimaximal Mixing
• Neutrino Oscillation Parameters (2σ) 

• indication for non-zero θ13: 

• Tri-bimaximal neutrino mixing:

I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2σ

limits for the mixing parameters [1],

sin2 θ12 = 0.30 (0.25− 0.34), sin2 θ23 = 0.5 (0.38− 0.64), sin2 θ13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],
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which predicts sin2 θatm, TBM = 1/2 and sin θ13,TBM = 0. In addition, it predicts sin2 θ!,TBM = 1/3

for the solar mixing angle. Even though the predicted θ!,TBM is currently still allowed by the

experimental data at 2σ, as it is very close to the upper bound at the 2σ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1′, 1′′ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a different finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2′, and 2′′, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⊕ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ∼ 10−3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to
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angle, the corresponding mixing angle in the charged lepton sector, θe
12, is much suppressed due to

the GJ relations,

θe
12 !

√
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mµ
! 1

3

√
md

ms
∼ 1

3
θc . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 θ! ! tan2 θ!,TBM − eiβθc/3 , (19)

where the relative phase β is determined by the strengths and phases of the VEV’s, φ0 and ψ′
0.

With θc ! 0.22 and (φ0ψ′
0) being real, the factor eiβ turns out to be very close to 1. This

deviation thus naturally accounts for the difference between the prediction of the TBM matrix,

which gives tan2 θ!,TBM = 1/2, and the experimental best fit value, tan2 θ!,exp = 0.429. The

off diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

θ13 ! θc/3
√

2 ∼ 0.05. We note that a more precise measurement of tan θ! will pin down the

phase of φ0ψ′
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = ε2u : εu : 1, md : ms : mb = ε2d : εd : 1 , (20)

where εu ! (1/200) = 0.005 and εd ! (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvdφ0ζ0
=
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−(1− i)b c 0

b b 1
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0 0 1




,

(21)

and with the choice of b ≡ φ0ψ′
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : mτ = 0.000870 : 0.143 : 1.00 . (23)
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Tri-bimaximal Mixing

• Neutrino Oscillation Parameters [Circa 2006 + MINOS July 07] 

• Tri-bimaximal neutrino mixing:

• new KamLAND result: 

I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2σ

limits for the mixing parameters [1],

sin2 θ12 = 0.30 (0.25− 0.34), sin2 θ23 = 0.5 (0.38− 0.64), sin2 θ13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called
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which predicts sin2 θatm, TBM = 1/2 and sin θ13,TBM = 0. In addition, it predicts sin2 θ!,TBM = 1/3

for the solar mixing angle. Even though the predicted θ!,TBM is currently still allowed by the

experimental data at 2σ, as it is very close to the upper bound at the 2σ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1′, 1′′ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a different finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2′, and 2′′, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⊕ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ∼ 10−3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to
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In this letter, we consider a different finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2′, and 2′′, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⊕ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ∼ 10−3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to

2

angle, the corresponding mixing angle in the charged lepton sector, θe
12, is much suppressed due to

the GJ relations,

θe
12 !

√
me

mµ
! 1

3

√
md

ms
∼ 1

3
θc . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 θ! ! tan2 θ!,TBM − eiβθc/3 , (19)

where the relative phase β is determined by the strengths and phases of the VEV’s, φ0 and ψ′
0.

With θc ! 0.22 and (φ0ψ′
0) being real, the factor eiβ turns out to be very close to 1. This

deviation thus naturally accounts for the difference between the prediction of the TBM matrix,

which gives tan2 θ!,TBM = 1/2, and the experimental best fit value, tan2 θ!,exp = 0.429. The

off diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

θ13 ! θc/3
√

2 ∼ 0.05. We note that a more precise measurement of tan θ! will pin down the

phase of φ0ψ′
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = ε2u : εu : 1, md : ms : mb = ε2d : εd : 1 , (20)

where εu ! (1/200) = 0.005 and εd ! (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvdφ0ζ0
=





0 (1 + i)b 0

−(1− i)b c 0

b b 1




,

Me

ybvdφ0ζ0
=





0 −(1− i)b b

(1 + i)b −3c b

0 0 1




,

(21)

and with the choice of b ≡ φ0ψ′
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : mτ = 0.000870 : 0.143 : 1.00 . (23)
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I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2σ

limits for the mixing parameters [1],

sin2 θ12 = 0.30 (0.25 − 0.34), sin2 θ23 = 0.5 (0.38 − 0.64), sin2 θ13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],
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









√

2/3 1/
√

3 0

−
√

1/6 1/
√

3 −1/
√

2

−
√

1/6 1/
√

3 1/
√

2











, (2)

which predicts sin2 θatm,TBM = 1/2 and sin θ13,TBM = 0. In addition, it predicts sin2 θ!,TBM = 1/3

for the solar mixing angle. Even though the predicted θ!,TBM is currently still allowed by the

experimental data at 2σ, as it is very close to the upper bound at the 2σ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1′, 1′′ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a different finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2′, and 2′′, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⊕ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ∼ 10−3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to
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angle, the corresponding mixing angle in the charged lepton sector, θe
12, is much suppressed due to

the GJ relations,

θe
12 !

√
me

mµ
! 1

3

√
md

ms
∼ 1

3
θc . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 θ! ! tan2 θ!,TBM − eiβθc/3 , (19)

where the relative phase β is determined by the strengths and phases of the VEV’s, φ0 and ψ′
0.

With θc ! 0.22 and (φ0ψ′
0) being real, the factor eiβ turns out to be very close to 1. This

deviation thus naturally accounts for the difference between the prediction of the TBM matrix,

which gives tan2 θ!,TBM = 1/2, and the experimental best fit value, tan2 θ!,exp = 0.429. The

off diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

θ13 ! θc/3
√

2 ∼ 0.05. We note that a more precise measurement of tan θ! will pin down the

phase of φ0ψ′
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].
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The observed quark masses respect the following relation,

mu : mc : mt = ε2u : εu : 1, md : ms : mb = ε2d : εd : 1 , (20)

where εu ! (1/200) = 0.005 and εd ! (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,
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and with the choice of b ≡ φ0ψ′
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : mτ = 0.000870 : 0.143 : 1.00 . (23)
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UMNS = U†
e,LUν,L (1)

sin θ13 ∼
(

∆m2
sun

∆m2
atm

)1/2

∼ O(0.1)⇒ LMA

θ12 + θc = 45o

=
1
2
− 1

2
θc cos β

tan θ2
!,exp = 0.47+0.06

−0.05

1

UPMNS =




1 0 0
0 c23 s23

0 −s23 c23








c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13








c12 s12 0
−s12 c12 0

0 0 1








1 0 0
0 eiα21/2 0
0 0 eiα31/2



 (1)

∆m2
31 = (2.40+0.24

−0.22)× 10−3 eV2, ∆m2
21 = (7.65+0.46

−0.40)× 10−5 eV2

sin2 θ23 = 0.5+0.14
−0.12, sin2 θ12 = 0.304+0.044

−0.032, sin2 θ13 = 0.01(≤ 0.040)

1

Schwetz, Tortola, Valle (Aug 2008)

consistent with θ13 = 0 
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0 c23 s23
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0 eiα21/2 0
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

 (1)

∆m2
31 = (2.40+0.24

−0.22)× 10−3 eV2, ∆m2
21 = (7.65+0.46

−0.40)× 10−5 eV2

sin2 θ23 = 0.5+0.14
−0.12, sin2 θ12 = 0.304+0.044

−0.032, sin2 θ13 = 0.01(≤ 0.040)

sin2 θ13 = 0.01+0.016
−0.011 (1σ)

1

2

Bari group,  June 2008



Group Theory of T′

A4: 

• even permutations of four objects

S: (1234) → (4321)      T: (1234) → (2314)

• geometrically -- invariant group of tetrahedron

• does NOT give rise to CKM mixing:    Vckm = 1

• all CG coefficients real 

• Double covering of tetrahedral group A4:

• in-equivalent representations of T’: 

• generators: 

A4:  1,  1′,  1″, 3
other:   2,  2′,  2″

UMNS = V †
e,LUTBM =




1 −θc/3 ∗

θc/3 1 ∗
∗ ∗ 1









√
2/3 1/

√
3 0

−
√

1/6 1/
√

3 −1/
√

2
−

√
1/6 1/

√
3 1/

√
2





(1)

UMNS =




1 0 0
0 c23 s23

0 −s23 c23








c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13








c12 s12 0
−s12 c12 0

0 0 1





S2 = T 3 = (ST )3 = 1

S2 = R, T 3 = 1, (ST )3 = 1, R2 = 1

1

R=1:    1,  1′,  1″, 3
R= -1:   2,  2′,  2″

2 +1 assignments for quarks

TBM for neutrinos

Frampton & Kephart, IJMPA (1995)

3

The vertices of a cube can be grouped into

two groups of four, each forming a regular

tetrahedron (see above, and also animation,

showing one of the two tetrahedra in the

cube). The symmetries of a regular

tetrahedron correspond to half of those of a

cube: those which map the tetrahedrons to

themselves, and not to each other.

The tetrahedron is the only Platonic solid

that is not mapped to itself by point

inversion.

The regular tetrahedron has 24 isometries,

forming the symmetry group Td,

isomorphic to S4. They can be categorized

as follows:

T, isomorphic to alternating group A4 (the identity and 11 proper rotations) with the following conjugacy

classes (in parentheses are given the permutations of the vertices, or correspondingly, the faces, and the
unit quaternion representation):

identity (identity; 1)
rotation about an axis through a vertex, perpendicular to the opposite plane, by an angle of ±120°:
4 axes, 2 per axis, together 8 ((1 2 3), etc.; (1±i±j±k)/2)
rotation by an angle of 180° such that an edge maps to the opposite edge: 3 ((1 2)(3 4), etc.; i,j,k)

reflections in a plane perpendicular to an edge: 6
reflections in a plane combined with 90° rotation about an axis perpendicular to the plane: 3 axes, 2 per
axis, together 6; equivalently, they are 90° rotations combined with inversion (x is mapped to !x): the
rotations correspond to those of the cube about face-to-face axes

The isometries of irregular tetrahedra

The isometries of an irregular tetrahedron depend on the geometry of the tetrahedron, with 7 cases possible. In

each case a 3-dimensional point group is formed.

An equilateral triangle base and isosceles (and non-equilateral) triangle sides gives 6 isometries,
corresponding to the 6 isometries of the base. As permutations of the vertices, these 6 isometries are the
identity 1, (123), (132), (12), (13) and (23), forming the symmetry group C3v, isomorphic to S3.

Four congruent isosceles (non-equilateral) triangles gives 8 isometries. If edges (1,2) and (3,4) are of
different length to the other 4 then the 8 isometries are the identity 1, reflections (12) and (34), and 180°
rotations (12)(34), (13)(24), (14)(23) and improper 90° rotations (1234) and (1432) forming the
symmetry group D2d.

Four congruent scalene triangles gives 4 isometries. The isometries are 1 and the 180° rotations (12)(34),

(13)(24), (14)(23). This is the Klein four-group V4 ! Z2
2, present as the point group D2.

Two pairs of isomorphic isosceles (non-equilateral) triangles. This gives two opposite edges (1,2) and
(3,4) that are perpendicular but different lengths, and then the 4 isometries are 1, reflections (12) and
(34) and the 180° rotation (12)(34). The symmetry group is C2v, isomorphic to V4.

Two pairs of isomorphic scalene triangles. This has two pairs of equal edges (1,3), (2,4) and (1,4), (2,3)
but otherwise no edges equal. The only two isometries are 1 and the rotation (12)(34), giving the group

The proper rotations and reflections in the symmetry group of the

regular tetrahedron



Group Theory of T′

• product rules:

★ complex CG coefficients in T′           

• spinorial x spinorial ⊃ vector:

• spinorial x vector ⊃ spinorial:

2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





1

2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





1

2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

1

2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

1

J. Q. Chen & P. D. Fan, J. Math Phys 39, 5519 (1998) 
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center of the group, generated by the elements E and , there are other abelian subgroups:

Z3, Z4 and Z6. In particular, there is a Z4 subgroup here denoted by GS, generated by the
element TST 2 and a Z3 subgroup here called GT , generated by the element T . As we will

see GS and GT are of great importance for the structure of our model. Realizations of S
and T for 2, 2′, 2′ ′ and 3 can be found in the appendix A and are taken from [13].

The multiplication rules of the representations are as follows:

1a ⊗ rb = rb ⊗ 1a = ra+b for r = 1, 2

1a ⊗ 3 = 3 ⊗ 1a = 3
2a ⊗ 2b = 3 ⊕ 1a+b

2a ⊗ 3 = 3 ⊗ 2a = 2 ⊕ 2′ ⊕ 2′′

3 ⊗ 3 = 3 ⊕ 3 ⊕ 1 ⊕ 1′ ⊕ 1′′

(6)

where a, b = 0,±1 and we have denoted 10 ≡ 1, 11 ≡ 1′, 1−1 ≡ 1′′ and similarly for
the doublet representations. On the right-hand-side the sum a + b is modulo 3. The

Clebsch-Gordan coefficients for the decomposition of product representations are shown
in the appendix A and were already calculated in [13]. Further synonyms of T ′ are Type
24/13 [17] and SL2(F3) [15].

3 Outline of the model

In this section we introduce our model and we illustrate its main features. We choose the
model to be supersymmetric, which would help us when discussing the vacuum selection
and the symmetry breaking pattern of T ′. The model is required to be invariant under a

flavour symmetry group F = T ′ ⊗ Z3 ⊗ U(1)FN . The group factor T ′ is the one responsi-
ble for the TB lepton mixing. The group T ′ is unable to produce all the necessary mass

suppressions for the fermions of the first and second generations. These suppressions orig-
inate in part from a spontaneously broken U(1)FN , according to the original FN proposal.
Finally, the Z3 factor helps in keeping separate the contributions to neutrino masses and

to charged fermion masses, and it is an important ingredient in the vacuum alignment
analysis. The fields of the model, together with their transformation properties under the

flavour group, are listed in Table 2.

Field l ec µc τ c Dq Dc
u Dc

d q3 tc bc hu,d ϕT ϕS ξ, ξ̃ η ξ′′

T ′ 3 1 1′′ 1′ 2′′ 2′′ 2′′ 1 1 1 1 3 3 1 2′ 1′′

Z3 ω ω2 ω2 ω2 ω ω2 ω2 ω ω2 ω2 1 1 ω ω 1 1

U(1)FN 0 2n n 0 0 n 0 0 0 0 0 0 0 0 0 0

Table 2: The transformation rules of the fields under the symmetries associated to the groups T ′, Z3 and
U(1)FN . We denote Dq = (q1, q2)t where q1 = (u, d)t and q2 = (c, s)t are the electroweak SU(2)-doublets of
the first two generations, Dc

u = (uc, cc)t and Dc
d = (dc, sc)t. Dq, Dc

u and Dc
d are doublets of T ′. q3 = (t, b)t

is the electroweak SU(2)-doublet of the third generation. q3, tc and bc are all singlets under T ′.
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element TST 2 and a Z3 subgroup here called GT , generated by the element T . As we will

see GS and GT are of great importance for the structure of our model. Realizations of S
and T for 2, 2′, 2′ ′ and 3 can be found in the appendix A and are taken from [13].

The multiplication rules of the representations are as follows:

1a ⊗ rb = rb ⊗ 1a = ra+b for r = 1, 2

1a ⊗ 3 = 3 ⊗ 1a = 3
2a ⊗ 2b = 3 ⊕ 1a+b

2a ⊗ 3 = 3 ⊗ 2a = 2 ⊕ 2′ ⊕ 2′′

3 ⊗ 3 = 3 ⊕ 3 ⊕ 1 ⊕ 1′ ⊕ 1′′

(6)

where a, b = 0,±1 and we have denoted 10 ≡ 1, 11 ≡ 1′, 1−1 ≡ 1′′ and similarly for
the doublet representations. On the right-hand-side the sum a + b is modulo 3. The

Clebsch-Gordan coefficients for the decomposition of product representations are shown
in the appendix A and were already calculated in [13]. Further synonyms of T ′ are Type
24/13 [17] and SL2(F3) [15].

3 Outline of the model

In this section we introduce our model and we illustrate its main features. We choose the
model to be supersymmetric, which would help us when discussing the vacuum selection
and the symmetry breaking pattern of T ′. The model is required to be invariant under a

flavour symmetry group F = T ′ ⊗ Z3 ⊗ U(1)FN . The group factor T ′ is the one responsi-
ble for the TB lepton mixing. The group T ′ is unable to produce all the necessary mass

suppressions for the fermions of the first and second generations. These suppressions orig-
inate in part from a spontaneously broken U(1)FN , according to the original FN proposal.
Finally, the Z3 factor helps in keeping separate the contributions to neutrino masses and

to charged fermion masses, and it is an important ingredient in the vacuum alignment
analysis. The fields of the model, together with their transformation properties under the

flavour group, are listed in Table 2.

Field l ec µc τ c Dq Dc
u Dc

d q3 tc bc hu,d ϕT ϕS ξ, ξ̃ η ξ′′

T ′ 3 1 1′′ 1′ 2′′ 2′′ 2′′ 1 1 1 1 3 3 1 2′ 1′′

Z3 ω ω2 ω2 ω2 ω ω2 ω2 ω ω2 ω2 1 1 ω ω 1 1

U(1)FN 0 2n n 0 0 n 0 0 0 0 0 0 0 0 0 0

Table 2: The transformation rules of the fields under the symmetries associated to the groups T ′, Z3 and
U(1)FN . We denote Dq = (q1, q2)t where q1 = (u, d)t and q2 = (c, s)t are the electroweak SU(2)-doublets of
the first two generations, Dc

u = (uc, cc)t and Dc
d = (dc, sc)t. Dq, Dc

u and Dc
d are doublets of T ′. q3 = (t, b)t

is the electroweak SU(2)-doublet of the third generation. q3, tc and bc are all singlets under T ′.

complexity cannot be avoided 
by different basis choice



A Novel Origin of CP Violation

• Conventionally:

• Explicit CP violation: complex Yukawa couplings

• Spontaneous CP violation: complex Higgs VEVs

★ complex CG coefficients in T′  ⇒ explicit CP violation

• real Yukawa couplings, real Higgs VEVs

• CP violation determined by complex CG coefficients 

• no additional parameters needed ⇒ extremely predictive model!!
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The Model
• Symmetry: SU(5) x T′

• Particle Content

• additional               symmetry:   

★ predictive model: only 9 operators allowed up to at least dim-7

★ vacuum misalignment: neutrino sector vs charged fermion sector

★ mass hierarchy: lighter generation masses allowed only at higher dim

T3 Ta F H5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z ′
12 ω ω4 ω8 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Charge assignments. Here the parameter ω = eiπ/6.

the quark sector while maintaining near TBM pattern. However, in order to explain the mass

hierarchy, the model has to resort to an additional U(1) symmetry. Furthermore, a large number

of operators are present in this model, making it less predictive. Here we consider an SU(5) model

combined with (d)T symmetry, which successfully accommodates the mass hierarchy as well as the

mixing matrices in both quark and lepton sectors. With an additional Z12 × Z ′
12 symmetry, only

“good” operators are allowed up to at least dimension seven, making the model very predictive.

In addition, the mass hierarchy is naturally explained without having hierarchy in the vacuum

expectation values (VEV’s) of the scalar fields, the reason being that the mass operators for the

lighter generation are allowed to appear only at higher order compared to those for the heavy

generation. Thus we have a dynamical explanation for the mass hierarchy.

II. THE MODEL

In SU(5), all matter fields are unified into a 10(Q, uc, ec)L and a 5(dc, ')L dimensional repre-

sentations. The three generations of 5 are assigned into a triplet of (d)T , in order to generate the

tri-bimaximal mixing pattern in the lepton sector, and it is denoted by F . On the other hand, to

obtain realistic quark sector, the third generation of the 10-dim representation transforms as a sin-

glet, so that the top quark mass is allowed by the family symmetry, while the first and the second

generations form a doublet of (d)T . These 10-dim representations are denoted by, respectively, T3

and Ta, where a = 1, 2. The Yukawa interactions are mediated by a 5-dim Higgs, H5 as well as a

45-dim Higgs, ∆45, which is required for the Georgi-Jarlskog relations. We have summarized these

quantum number assignment in Table I.

3

T3 Ta F H5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z ′
12 ω ω4 ω8 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Charge assignments. Here the parameter ω = eiπ/6.

the quark sector while maintaining near TBM pattern. However, in order to explain the mass

hierarchy, the model has to resort to an additional U(1) symmetry. Furthermore, a large number

of operators are present in this model, making it less predictive. Here we consider an SU(5) model

combined with (d)T symmetry, which successfully accommodates the mass hierarchy as well as the

mixing matrices in both quark and lepton sectors. With an additional Z12 × Z ′
12 symmetry, only

“good” operators are allowed up to at least dimension seven, making the model very predictive.

In addition, the mass hierarchy is naturally explained without having hierarchy in the vacuum

expectation values (VEV’s) of the scalar fields, the reason being that the mass operators for the

lighter generation are allowed to appear only at higher order compared to those for the heavy

generation. Thus we have a dynamical explanation for the mass hierarchy.

II. THE MODEL

In SU(5), all matter fields are unified into a 10(Q, uc, ec)L and a 5(dc, ')L dimensional repre-

sentations. The three generations of 5 are assigned into a triplet of (d)T , in order to generate the

tri-bimaximal mixing pattern in the lepton sector, and it is denoted by F . On the other hand, to

obtain realistic quark sector, the third generation of the 10-dim representation transforms as a sin-

glet, so that the top quark mass is allowed by the family symmetry, while the first and the second

generations form a doublet of (d)T . These 10-dim representations are denoted by, respectively, T3

and Ta, where a = 1, 2. The Yukawa interactions are mediated by a 5-dim Higgs, H5 as well as a

45-dim Higgs, ∆45, which is required for the Georgi-Jarlskog relations. We have summarized these

quantum number assignment in Table I.

3

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

T3 Ta F H5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z ′
12 ω ω4 ω8 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Charge assignments. Here the parameter ω = eiπ/6.

the quark sector while maintaining near TBM pattern. However, in order to explain the mass

hierarchy, the model has to resort to an additional U(1) symmetry. Furthermore, a large number

of operators are present in this model, making it less predictive. Here we consider an SU(5) model

combined with (d)T symmetry, which successfully accommodates the mass hierarchy as well as the

mixing matrices in both quark and lepton sectors. With an additional Z12 × Z ′
12 symmetry, only

“good” operators are allowed up to at least dimension seven, making the model very predictive.

In addition, the mass hierarchy is naturally explained without having hierarchy in the vacuum

expectation values (VEV’s) of the scalar fields, the reason being that the mass operators for the

lighter generation are allowed to appear only at higher order compared to those for the heavy

generation. Thus we have a dynamical explanation for the mass hierarchy.

II. THE MODEL

In SU(5), all matter fields are unified into a 10(Q, uc, ec)L and a 5(dc, ')L dimensional repre-

sentations. The three generations of 5 are assigned into a triplet of (d)T , in order to generate the

tri-bimaximal mixing pattern in the lepton sector, and it is denoted by F . On the other hand, to

obtain realistic quark sector, the third generation of the 10-dim representation transforms as a sin-

glet, so that the top quark mass is allowed by the family symmetry, while the first and the second

generations form a doublet of (d)T . These 10-dim representations are denoted by, respectively, T3

and Ta, where a = 1, 2. The Yukawa interactions are mediated by a 5-dim Higgs, H5 as well as a

45-dim Higgs, ∆45, which is required for the Georgi-Jarlskog relations. We have summarized these

quantum number assignment in Table I.

3

T3 Ta F H5 H ′
5

∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z ′
12 ω ω4 ω8 ω10 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Charge assignments. Here the parameter ω = eiπ/6.

in [9] generalizes the (d)T to the quark sector while maintaining near TBM pattern. However,

in order to explain the mass hierarchy, the model has to resort to an additional U(1) symmetry.

Furthermore, a large number of operators are present in this model, making it less predictive. Here

we consider an SU(5) model combined with (d)T symmetry, which successfully accommodates the

mass hierarchy as well as the mixing matrices in both quark and lepton sectors. With an additional

Z12 × Z ′
12 symmetry, only “good” operators are allowed up to at least dimension seven, making

the model very predictive. In addition, the mass hierarchy is naturally explained without having

hierarchy in the vacuum expectation values (VEV’s) of the scalar fields, the reason being that the

mass operators for the lighter generation are allowed to appear only at higher order compared to

those for the heavy generation. Thus we have a dynamical explanation for the mass hierarchy.

II. THE MODEL

In SU(5), all matter fields are unified into a 10(Q, uc, ec)L and a 5(dc, ')L dimensional repre-

sentations. The three generations of 5 are assigned into a triplet of (d)T , in order to generate the

tri-bimaximal mixing pattern in the lepton sector, and it is denoted by F . On the other hand,

to obtain realistic quark sector, the third generation of the 10-dim representation transforms as a

singlet, so that the top quark mass is allowed by the family symmetry, while the first and the sec-

ond generations form a doublet of (d)T . These 10-dim representations are denoted by, respectively,

T3 and Ta, where a = 1, 2. The Yukawa interactions are mediated by a 5-dim Higgs, H5, a 5-dim

Higgs, H ′
5
, as well as a 45-dim Higgs, ∆45, which is required for the Georgi-Jarlskog relations. We

have summarized these quantum number assignment in Table I. It is to be noted that H5 and H ′
5

are not conjugate of each other as they have different Z12 and Z ′
12 charges.

3
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2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

1



The Model

• Lagrangian:  only 9 operators allowed!!

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH
′
5FT3φζ +

1
Λ3

[
ys∆45FTaφψN + ydH

′
5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

T1 = φ3, T2 = φ′ 3, T3 = φ2φ′, T4 = φ′ 2φ, T5 = N3 , T6 = ζ3, T7 = φ2ζ

T8 = φ′ 2ζ, T9 = φφ′ζ, T10 = φ2N, T11 = φ′ 2N, T12 = φφ′N, T13 = ψ′ 2φ

T14 = ψ′ 2φ′, T15 = ψ2φ, T16 = ψ2φ′, T17 = ψψ′φ, T18 = ψψ′φ′, T19 = ψψ′ζ

Q1 = φ4, Q2 = φ′ 4, Q3 = φ3φ′, Q4 = φ′ 3φ, Q5 = φ2φ′ 2, Q6 = ζ2N2

Q7 = ψ4, Q8 = ψ′ 3ψ, Q9 = ψ3ψ, Q10 = ψ3ψ′, Q11 = ψ2ψ′ 2, Q12 = φ2ζN

Q13 = φ′ 2ζN, Q14 = φφ′ζN, Q15 = φ2ψψ′, Q16 = φ′ 2ψψ′, Q17 = ψψ′φφ′

V (φ,φ′,ψ,ψ′, ζ, N) =
∑

i

m2
i Bi +

∑

j

µjTj +
∑

k

ckQk

Λ: cutoff scale above which the family symmetry (d)T is exact
Mx: scale at which the lepton number violating operator is generated
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2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

T ′ → nothing:

T ′ → GS :

1



Neutrino Sector

• Operators:

• Symmetry breaking:

• Resulting mass matrix:

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2σ

limits for the mixing parameters [1],

sin2 θ12 = 0.30 (0.25− 0.34), sin2 θ23 = 0.5 (0.38− 0.64), sin2 θ13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =





√
2/3 1/

√
3 0

−
√

1/6 1/
√

3 −1/
√

2

−
√

1/6 1/
√

3 1/
√

2




, (2)

which predicts sin2 θatm, TBM = 1/2 and sin θ13,TBM = 0. In addition, it predicts sin2 θ!,TBM = 1/3

for the solar mixing angle. Even though the predicted θ!,TBM is currently still allowed by the

experimental data at 2σ, as it is very close to the upper bound at the 2σ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1′, 1′′ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a different finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2′, and 2′′, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⊕ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ∼ 10−3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to

2
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2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

T ′ → nothing:
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We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

Down Quark Sector

• operators:

• generation of b-quark mass: breaking of  (d)T : dynamical origin for 
hierarchy between mb and mt 

• lighter family acquire masses thru operators with higher dimensionality

! dynamical origin of mass hierarchy

• symmetry breaking:

• mass matrix:

• consider 2nd, 3rd families only:   TBM exact

• Georgi-Jarlskog relations:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo

7

H5T3Ta ψ′, ψ

ψφ, ψφ′, ψ′φ, ψ′φ′, ψ′ζ, ψ′N, ψN

ψ3, ψψ′2, ψφ2, ψφ′2, ψφζ, ψφ′ζ, ψ′3, ψ′ψ2, ψ′φ2, ψ′φ′2, ψ′φζ, ψ′φ′ζ,
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4
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corrections to TBM

Down Quark Sector

• operators:

• generation of b-quark mass: breaking of  (d)T : dynamical origin for 
hierarchy between mb and mt 

• lighter family acquire masses thru operators with higher dimensionality

! dynamical origin of mass hierarchy

• symmetry breaking:

• mass matrix:

• consider 2nd, 3rd families only:   TBM exact

• Georgi-Jarlskog relations:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =


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0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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Λ3
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2ψ′
]

(5)

LFF =
1

MxΛ
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λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,
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1




, (7)

(d)T −→ GT :
〈
φ
〉
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where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],
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1
3
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−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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H5T3Ta ψ′, ψ

ψφ, ψφ′, ψ′φ, ψ′φ′, ψ′ζ, ψ′N, ψN

ψ3, ψψ′2, ψφ2, ψφ′2, ψφζ, ψφ′ζ, ψ′3, ψ′ψ2, ψ′φ2, ψ′φ′2, ψ′φζ, ψ′φ′ζ,

ψφN,ψφ′N, ψ′φN,ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψξφ, ψξφ′, ψξζ, ψ′ξ2 ψ′ξφ, ψ′ξφ′, ψ′ξζ, ψξN, ψ′ξN, ψ′η, ψφη, ψφ′η, ψξη,

ψ′φη, ψ′φ′η, ψ′ξη, ψη, ψφη, ψφ′η, ψ′φη, ψ′φ′η, ψφη, ψφ′η, ψ′φη, ψ′φ′η

H5TaTa φ, φ′

φ′2, ψ2, ψ′2, φφ′, ψψ′

φ3, φ2ζ, φζ2, φ′2ζ, φ′ζ2,φφ′ζ, φφ′2, φ′φ2, φN2, φ′N2, φ′2N, φφ′N, φNζ, φ′Nζ

ξ, ξ2, ξζ, ξN, ξη, ξ2, ξφ, ξφ′, ξ3, ξ2ζ, ξ2η, ξ2ζ, ξNζ, ξNη, ξζη, ξφ2, ξφ′2, ξφφ′,

ξ2φ, ξ2φ′, ξφN, ξφη, ξφζ, ξφ′N, ξφ′η, ξφ′ζ, φ2η, φη2, φηN, φηζ, φ′η2, φ′ηN,

φ′ηζ,φη, φ′η, ξN2, ξη2, ξζ2

H5FT3 φ, φ′

ψ2, φ2, φ′2, φ′φ, ψ′2, ψψ′, φ′ζ, φ′N, φN

φ3, φ′3, φ2φ′, φφ′2, φζ2, φ′ζ2,φψ2, φ′ψ′2, ζψ2, ζψ′2, φ′ψ2, φψ2,

φN2, φ′N2, φNζ, φ′Nζ, Nψ2, ζψ2, ζψψ′, Nψψ′

ξ, ξ2, ξN, ξζ, ξη, ξφ, ξφ′, ξ3, ξ2N, ξ2ζ, ξ2η, ξ2φ, ξ2φ′, ξφ2,

ξφ′2, ξφφ′, ξφN, ξφζ, ξφη, ξφ′N, ξφ′ζ, ξφ′η, φ′η, φη2, φηN, φηζ, φ′η2, φ′ηN, φ′ηζ, ηψ2,

ηψ′2, φη, φηN, φηζ, φ′η2, φ′ηN, ηψψ′

H5FTa ψ, ψ′

ψφ′, ψ′φ, ψ′φ′, φψ

ψφ2, ψφζ, ψ′φζ, ψφ′2, ψ′φ′2, ψφφ′, ψ′φφ′, ψφ′ζ, ψ′φ′ζ, ψφN, ψ′φN, ψφ′N, ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψ′ξ2, ψξφ, ψξφ′, ψ′ξφ, ψ′ξφ′,

ψξN, ψξη,ψξζ, ψ′ξζ, ψ′ξη, ψ′ξN, ψφη, ψ′φη, ψ′φ′η, ψφ′η, ψ′φ′η, ψφη, ψ′φη

TABLE II: Additional operators that are allowed by the SU(5) × (d)T symmetry up to dim-7. For each

operator shown above, there is a corresponding one with H5 ↔ ∆45.

Upon the breaking of (d)T → GT, the operator ∆45FTaφN contributes to the (22) element in Md, e,

and thus gives rise to ms and mµ. As this operator involves ∆45, the GJ relation for the second

family, mµ $ 3ms is obtained. If no further symmetry breaking takes place, the first generation

masses, md and me vanishes. At this stage, the diagonalization mass matrix for the charged leptons

(and down type quark) is identity, and hence the the tri-bimaximal mixing matrix is exact.

To obtain the correct mass relation for the first generation, it inevitably calls for flavor mixing

in the down quark sector, which then leads to corrections to the tri-bimaximal mixing pattern.

6

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

corrections to TBM

2

T3 Ta F H5 H ′
5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z′
12 ω ω4 ω8 ω10 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Field content of our model. The Z12 charges are
given in terms of the parameter ω = eiπ/6.

gauge anomalies automatically [12, 13]. In addition to
the SU(5)×T ′ symmetry, we further impose a Z12×Z ′

12

symmetry. Due to the Z12×Z ′
12 symmetry, only nine op-

erators are allowed in our model up to mass dimension-7
in the Yukawa sector. The discrete symmetries of our
model allow the lighter generation masses to arise only
at higher mass dimensionality, and thus providing a dy-
namical origin of the mass hierarchy.

The Lagrangian of the Yukawa sector of the model is
given by,

LYuk = LTT + LTF + LFF + h.c. , (3)

−LTT = ytH5T3T3 +
1

Λ2
H5

[

ytsT3Taψζ

+ycTaTbφ
2

]

+
1

Λ3
yuH5TaTbφ

′3 , (4)

−LTF =
1

Λ2
ybH

′
5
FT3φζ +

1

Λ3

[

ys∆45FTaφψN

+ydH5
′FTaφ

2ψ′

]

, (5)

−LFF =
1

ΛMX

[

λ1H5H5FF ξ + λ2H5H5FFη

]

, (6)

which is invariant under SU(5) × T ′ and it is CP non-
invariant. Here the parameter Λ is the cutoff scale of
the T ′ symmetry while MX is the scale where lepton
number violating operators are generated. Note that all
Yukawa coupling constants, yx, in the Lagrangian are
real parameters. The T ′ flavon fields acquire vacuum
expectation values along the following direction,

〈ξ〉 =





1
1
1



 ξ0Λ , 〈φ′〉 =





1
1
1



 φ′
0Λ , (7)

〈φ〉 =





0
0
1



φ0Λ , 〈ψ〉 =

(

1
0

)

ψ′
0Λ , (8)

〈ψ′〉 =

(

1
1

)

ψ′
0Λ , (9)

〈ζ〉 = ζ0Λ , 〈N〉 = N0Λ , 〈η〉 = u0Λ . (10)

Note that all the expectation values are real.
In terms of the T ′ and SU(5) component fields, the

above Lagrangian gives the following Yukawa interactions

for the charged fermions in the weak charged current in-
teraction eigenstates,

− LYuk ⊃ UR,i(Mu)ijQL,j + DR,i(Md)ijQL,j

+ER,i(Me)ij'L,j + h.c. , (11)

where QL denotes the quark doublets while UR and DR

denotes the iso-singet up- and down-type quarks, with
i and j being the generation indices. Similarly, 'L and
ER denote the iso-doublet and singlet charged leptons,
respectively. The matrices Mu, Md and Me, upon the
breaking of T ′ and the electroweak symmetry, are given
in terms of seven parameters by

Mu =







iφ′3
0 (1−i

2
)φ′3

0 0

(1−i
2

)φ′3
0 φ′3

0 + (1 − i
2
)φ2

0 y′ψ0ζ0

0 y′ψ0ζ0 1






ytvu, (12)

Md =







0 (1 + i)φ0ψ′
0 0

−(1 − i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0






ydvdφ0 , (13)

Me =







0 −(1 − i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0






ydvdφ0 ,

(14)

which manifest the SU(5) relation, Md = MT
e , except for

the factor of −3 in the (22) entry of Me, due to the SU(5)
CG coefficient through the coupling to ∆45. In addition
to this −3 factor, the Georgi-Jarlskog (GJ) relations also
require Me,d being non-diagonal, leading to corrections to
the TBM pattern [9]. Note that the complex coefficients
in the above mass matrices arise entirely from the CG
coefficients of the T ′ group theory. More precisely, these
complex CG coefficients appear in couplings that involve
the doublet representations of T ′.

The mass matrices Mu,d are diagonalized by,

V †
u,RMuVu,L = diag(mu, mc, mt) and V †

d,RMdVd,L =
diag(md, ms, mb), where the mass eigenvalues on the
right-hand side of the equations are real and positive.
This gives the following weak charged current interaction
in the mass eigenstates of the fermions,

Lcc =
g

2
√

2

[

Wµ
+((x, t)J−

µ ((x, t) + Wµ
−((x, t)J+

µ ((x, t)

]

,

J−
µ = (u′, c′, t

′
)LγµVCKM







d′

s′

b′







L

. (15)

The complex mass matrices Mu,d lead to a complex quark

mixing matrix, VCKM = V †
u,LVd,L.

The interactions in LFF lead to the following neutrino
mass matrix,

Mν =







2ξ0 + u0 −ξ0 −ξ0

−ξ0 2ξ0 −ξ0 + u0

−ξ0 −ξ0 + u0 2ξ0







λv2

Mx
, (16)

19

2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

1

2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
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The Model

• (d)T breaking:

! charged fermion sector
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We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

Down Quark Sector

• operators:

• generation of b-quark mass: breaking of  (d)T : dynamical origin for 
hierarchy between mb and mt 

• lighter family acquire masses thru operators with higher dimensionality

! dynamical origin of mass hierarchy

• symmetry breaking:

• mass matrix:

• consider 2nd, 3rd families only:   TBM exact

• Georgi-Jarlskog relations:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !
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mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα
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mu/mc

∣∣ ∼
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md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,
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control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH
′
5FT3φζ +

1
Λ3

[
ys∆45FTaφψN + ydH

′
5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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corrections to TBM

Down Quark Sector

• operators:

• generation of b-quark mass: breaking of  (d)T : dynamical origin for 
hierarchy between mb and mt 

• lighter family acquire masses thru operators with higher dimensionality

! dynamical origin of mass hierarchy

• symmetry breaking:

• mass matrix:

• consider 2nd, 3rd families only:   TBM exact

• Georgi-Jarlskog relations:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)
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0 −3ψ0N0 φ0ψ′
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0 0 ζ0


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ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,
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breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo

7

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

H5T3Ta ψ′, ψ

ψφ, ψφ′, ψ′φ, ψ′φ′, ψ′ζ, ψ′N, ψN

ψ3, ψψ′2, ψφ2, ψφ′2, ψφζ, ψφ′ζ, ψ′3, ψ′ψ2, ψ′φ2, ψ′φ′2, ψ′φζ, ψ′φ′ζ,

ψφN,ψφ′N, ψ′φN,ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψξφ, ψξφ′, ψξζ, ψ′ξ2 ψ′ξφ, ψ′ξφ′, ψ′ξζ, ψξN, ψ′ξN, ψ′η, ψφη, ψφ′η, ψξη,

ψ′φη, ψ′φ′η, ψ′ξη, ψη, ψφη, ψφ′η, ψ′φη, ψ′φ′η, ψφη, ψφ′η, ψ′φη, ψ′φ′η

H5TaTa φ, φ′

φ′2, ψ2, ψ′2, φφ′, ψψ′

φ3, φ2ζ, φζ2, φ′2ζ, φ′ζ2,φφ′ζ, φφ′2, φ′φ2, φN2, φ′N2, φ′2N, φφ′N, φNζ, φ′Nζ

ξ, ξ2, ξζ, ξN, ξη, ξ2, ξφ, ξφ′, ξ3, ξ2ζ, ξ2η, ξ2ζ, ξNζ, ξNη, ξζη, ξφ2, ξφ′2, ξφφ′,

ξ2φ, ξ2φ′, ξφN, ξφη, ξφζ, ξφ′N, ξφ′η, ξφ′ζ, φ2η, φη2, φηN, φηζ, φ′η2, φ′ηN,

φ′ηζ,φη, φ′η, ξN2, ξη2, ξζ2
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ηψ′2, φη, φηN, φηζ, φ′η2, φ′ηN, ηψψ′

H5FTa ψ, ψ′

ψφ′, ψ′φ, ψ′φ′, φψ
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TABLE II: Additional operators that are allowed by the SU(5) × (d)T symmetry up to dim-7. For each

operator shown above, there is a corresponding one with H5 ↔ ∆45.

Upon the breaking of (d)T → GT, the operator ∆45FTaφN contributes to the (22) element in Md, e,

and thus gives rise to ms and mµ. As this operator involves ∆45, the GJ relation for the second

family, mµ $ 3ms is obtained. If no further symmetry breaking takes place, the first generation

masses, md and me vanishes. At this stage, the diagonalization mass matrix for the charged leptons
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0 0

−(1− i)φ0ψ′
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φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =
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

0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second
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control. Note that there is no correction to Md, e given above at least to the order of dim-7.
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(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
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ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,
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1−i
2 φ′3
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
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where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

corrections to TBM

2

T3 Ta F H5 H ′
5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z′
12 ω ω4 ω8 ω10 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Field content of our model. The Z12 charges are
given in terms of the parameter ω = eiπ/6.

gauge anomalies automatically [12, 13]. In addition to
the SU(5)×T ′ symmetry, we further impose a Z12×Z ′

12

symmetry. Due to the Z12×Z ′
12 symmetry, only nine op-

erators are allowed in our model up to mass dimension-7
in the Yukawa sector. The discrete symmetries of our
model allow the lighter generation masses to arise only
at higher mass dimensionality, and thus providing a dy-
namical origin of the mass hierarchy.

The Lagrangian of the Yukawa sector of the model is
given by,

LYuk = LTT + LTF + LFF + h.c. , (3)

−LTT = ytH5T3T3 +
1

Λ2
H5

[

ytsT3Taψζ

+ycTaTbφ
2

]

+
1

Λ3
yuH5TaTbφ

′3 , (4)

−LTF =
1

Λ2
ybH

′
5
FT3φζ +

1

Λ3

[

ys∆45FTaφψN

+ydH5
′FTaφ

2ψ′

]

, (5)

−LFF =
1

ΛMX

[

λ1H5H5FF ξ + λ2H5H5FFη

]

, (6)

which is invariant under SU(5) × T ′ and it is CP non-
invariant. Here the parameter Λ is the cutoff scale of
the T ′ symmetry while MX is the scale where lepton
number violating operators are generated. Note that all
Yukawa coupling constants, yx, in the Lagrangian are
real parameters. The T ′ flavon fields acquire vacuum
expectation values along the following direction,

〈ξ〉 =





1
1
1



 ξ0Λ , 〈φ′〉 =





1
1
1



 φ′
0Λ , (7)

〈φ〉 =





0
0
1



φ0Λ , 〈ψ〉 =

(

1
0

)

ψ′
0Λ , (8)

〈ψ′〉 =

(

1
1

)

ψ′
0Λ , (9)

〈ζ〉 = ζ0Λ , 〈N〉 = N0Λ , 〈η〉 = u0Λ . (10)

Note that all the expectation values are real.
In terms of the T ′ and SU(5) component fields, the

above Lagrangian gives the following Yukawa interactions

for the charged fermions in the weak charged current in-
teraction eigenstates,

− LYuk ⊃ UR,i(Mu)ijQL,j + DR,i(Md)ijQL,j

+ER,i(Me)ij'L,j + h.c. , (11)

where QL denotes the quark doublets while UR and DR

denotes the iso-singet up- and down-type quarks, with
i and j being the generation indices. Similarly, 'L and
ER denote the iso-doublet and singlet charged leptons,
respectively. The matrices Mu, Md and Me, upon the
breaking of T ′ and the electroweak symmetry, are given
in terms of seven parameters by

Mu =







iφ′3
0 (1−i

2
)φ′3

0 0

(1−i
2

)φ′3
0 φ′3

0 + (1 − i
2
)φ2

0 y′ψ0ζ0

0 y′ψ0ζ0 1






ytvu, (12)

Md =







0 (1 + i)φ0ψ′
0 0

−(1 − i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0






ydvdφ0 , (13)

Me =







0 −(1 − i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0






ydvdφ0 ,

(14)

which manifest the SU(5) relation, Md = MT
e , except for

the factor of −3 in the (22) entry of Me, due to the SU(5)
CG coefficient through the coupling to ∆45. In addition
to this −3 factor, the Georgi-Jarlskog (GJ) relations also
require Me,d being non-diagonal, leading to corrections to
the TBM pattern [9]. Note that the complex coefficients
in the above mass matrices arise entirely from the CG
coefficients of the T ′ group theory. More precisely, these
complex CG coefficients appear in couplings that involve
the doublet representations of T ′.

The mass matrices Mu,d are diagonalized by,

V †
u,RMuVu,L = diag(mu, mc, mt) and V †

d,RMdVd,L =
diag(md, ms, mb), where the mass eigenvalues on the
right-hand side of the equations are real and positive.
This gives the following weak charged current interaction
in the mass eigenstates of the fermions,

Lcc =
g

2
√

2

[

Wµ
+((x, t)J−

µ ((x, t) + Wµ
−((x, t)J+

µ ((x, t)

]

,

J−
µ = (u′, c′, t

′
)LγµVCKM







d′

s′

b′






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only vector representations involved
⇒ all CG are real

⇒ Majorana phases either 0 or π 

2

T3 Ta F H5 H ′
5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z′
12 ω ω4 ω8 ω10 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Field content of our model. The Z12 charges are
given in terms of the parameter ω = eiπ/6.

gauge anomalies automatically [12, 13]. In addition to
the SU(5)×T ′ symmetry, we further impose a Z12×Z ′

12

symmetry. Due to the Z12×Z ′
12 symmetry, only nine op-

erators are allowed in our model up to mass dimension-7
in the Yukawa sector. The discrete symmetries of our
model allow the lighter generation masses to arise only
at higher mass dimensionality, and thus providing a dy-
namical origin of the mass hierarchy.

The Lagrangian of the Yukawa sector of the model is
given by,

LYuk = LTT + LTF + LFF + h.c. , (3)

−LTT = ytH5T3T3 +
1

Λ2
H5

[

ytsT3Taψζ

+ycTaTbφ
2

]

+
1

Λ3
yuH5TaTbφ

′3 , (4)

−LTF =
1

Λ2
ybH

′
5
FT3φζ +

1

Λ3

[

ys∆45FTaφψN

+ydH5
′FTaφ

2ψ′

]

, (5)

−LFF =
1

ΛMX

[

λ1H5H5FF ξ + λ2H5H5FFη

]

, (6)

which is invariant under SU(5) × T ′ and it is CP non-
invariant. Here the parameter Λ is the cutoff scale of
the T ′ symmetry while MX is the scale where lepton
number violating operators are generated. Note that all
Yukawa coupling constants, yx, in the Lagrangian are
real parameters. The T ′ flavon fields acquire vacuum
expectation values along the following direction,

〈ξ〉 =





1
1
1



 ξ0Λ , 〈φ′〉 =





1
1
1



 φ′
0Λ , (7)

〈φ〉 =





0
0
1



φ0Λ , 〈ψ〉 =

(

1
0

)

ψ′
0Λ , (8)

〈ψ′〉 =

(

1
1

)

ψ′
0Λ , (9)

〈ζ〉 = ζ0Λ , 〈N〉 = N0Λ , 〈η〉 = u0Λ . (10)

Note that all the expectation values are real.
In terms of the T ′ and SU(5) component fields, the

above Lagrangian gives the following Yukawa interactions

for the charged fermions in the weak charged current in-
teraction eigenstates,

− LYuk ⊃ UR,i(Mu)ijQL,j + DR,i(Md)ijQL,j

+ER,i(Me)ij'L,j + h.c. , (11)

where QL denotes the quark doublets while UR and DR

denotes the iso-singet up- and down-type quarks, with
i and j being the generation indices. Similarly, 'L and
ER denote the iso-doublet and singlet charged leptons,
respectively. The matrices Mu, Md and Me, upon the
breaking of T ′ and the electroweak symmetry, are given
in terms of seven parameters by

Mu =







iφ′3
0 (1−i

2
)φ′3

0 0

(1−i
2

)φ′3
0 φ′3

0 + (1 − i
2
)φ2

0 y′ψ0ζ0

0 y′ψ0ζ0 1






ytvu, (12)

Md =







0 (1 + i)φ0ψ′
0 0

−(1 − i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0






ydvdφ0 , (13)

Me =







0 −(1 − i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0






ydvdφ0 ,

(14)

which manifest the SU(5) relation, Md = MT
e , except for

the factor of −3 in the (22) entry of Me, due to the SU(5)
CG coefficient through the coupling to ∆45. In addition
to this −3 factor, the Georgi-Jarlskog (GJ) relations also
require Me,d being non-diagonal, leading to corrections to
the TBM pattern [9]. Note that the complex coefficients
in the above mass matrices arise entirely from the CG
coefficients of the T ′ group theory. More precisely, these
complex CG coefficients appear in couplings that involve
the doublet representations of T ′.

The mass matrices Mu,d are diagonalized by,

V †
u,RMuVu,L = diag(mu, mc, mt) and V †

d,RMdVd,L =
diag(md, ms, mb), where the mass eigenvalues on the
right-hand side of the equations are real and positive.
This gives the following weak charged current interaction
in the mass eigenstates of the fermions,

Lcc =
g

2
√

2

[

Wµ
+((x, t)J−

µ ((x, t) + Wµ
−((x, t)J+

µ ((x, t)

]

,

J−
µ = (u′, c′, t

′
)LγµVCKM







d′

s′

b′







L

. (15)

The complex mass matrices Mu,d lead to a complex quark

mixing matrix, VCKM = V †
u,LVd,L.

The interactions in LFF lead to the following neutrino
mass matrix,

Mν =
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2ξ0 + u0 −ξ0 −ξ0

−ξ0 2ξ0 −ξ0 + u0

−ξ0 −ξ0 + u0 2ξ0
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Mx
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−((x, t)J+

µ ((x, t)

]
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d′

s′

b′
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L
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The complex mass matrices Mu,d lead to a complex quark

mixing matrix, VCKM = V †
u,LVd,L.

The interactions in LFF lead to the following neutrino
mass matrix,

Mν =







2ξ0 + u0 −ξ0 −ξ0

−ξ0 2ξ0 −ξ0 + u0

−ξ0 −ξ0 + u0 2ξ0







λv2

Mx
, (16)

3

which is parametrized by two parameters, giving the
three absolute neutrino masses [9] (see below). As these
interactions involve only the triplet representations of T ′,
the relevant product rule is 3 ⊗ 3. Consequently, all CG
coefficients are real, leading to a real neutrino Majo-
rana mass matrix. The neutrino mass matrix given in
Eq. 16 has the special property that it is form diagonal-
izable [14], i.e. independent of the values of ξ0 and u0, it
is diagonalized by the tri-bimaximal mixing matrix,

UT
TBM

MνUTBM = diag(u0 + 3ξ0, u0,−u0 + 3ξ0)
v2

u

MX
,

≡ diag(m1, m2, m3) . (17)

While the neutrino mass matrix is real, the complex
charged lepton mass matrix Me, which is diagonalized
by, V †

e,RMeVe,L = diag(me, mµ, mτ ), leads to a complex

VPMNS = V †
e,LUTBM (see below).

CPT Invariance and CP Violation.—Even though the
complexity of the Lagrangian arises in our model through
the complex CG coefficients, the hermiticity of the La-
grangian, which is required in order to have CPT invari-
ance, remains satisfied. This is easily seen using the com-
ponent form given in Eq. 11. Take the term URMuQL

for example. Its corresponding hermitian conjugate is

(URMuQL)† = (U †
Rγ0MuQL)† = QLM †

uUR . (18)

The hermiticity of the Lagrangian allows us to write, in
general,

L(#x, t) = αO(#x, t) + α∗
O

†(#x, t) , (19)

where O(#x, t) is some operator and α is some c-number.
Recall that, the charge conjugation C changes a left-
hande particle into a left-hande anti-particle, while the
parity P turns a left-handed particle into a right-handed
particle, and vice versa. Thus the CP transformation
converts a left-handed particle into a right-handed anti-
particle. Effectively,

O(#x, t)
CP−→ O

†(−#x, t) , α
CP−→ α , (20)

The time reversal operator is antiunitary. It reverses the
momentum of a particle and flips its spin. Effectively,

O(#x, t)
T−→ O(#x,−t) , α

T−→ α∗ , (21)

In the weak eigenstates, the interactions Lcc in Eq. 15 are
invariant under CP and T, as all coupling constants are
real. On the other hand, the Yukawa interactions violate
both CP and T. Using the up-quark sector again as an
example, for each conjugate pair specified by indices i
and j,

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

CP−→ QL,j(Mu)ijUR,i + UR,i(Mu)∗ijQL,j , (22)

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

T−→ UR,i(Mu)∗ijQL,j + QL,j(Mu)ijUR,i , (23)

The complexity of the mass matrix, giving rise to CP and
T violations, ensues from the complex CG coefficients in
T ′. Here we have suppressed the space-time coordinates
the inversions of which under the transformations are as-
sumed implicitly. Due to its hermiticity, the Lagrangian
is CPT invariant,

URMuQL +QLM †
uUR

CPT−→ QLM †
uUR +URMuQL , (24)

Alternatively, in the mass eigenstates, the Yukawa inter-
actions are invariant under CP and T, while the charged
current interactions violate CP and T individually and
are invariant under CPT. Note that CP violation is in-
herent in the Lagrangian Eq.3, which is T ′ and SU(5)
invariant.

Numerical Predictions.—The predicted charged
fermion mass matrices in our model are parametrized in
terms of 7 parameters,

Mu

ytvu
=







ig 1−i
2

g 0
1−i
2

g g + (1 − i
2
)h k

0 k 1






, (25)

Md, MT
e

ybvdφ0ζ0
=







0 (1 + i)b 0

−(1 − i)b (1,−3)c 0

b b 1






, (26)

With b ≡ φ0ψ′
0/ζ0 = 0.0029, c ≡ ψ0N0/ζ0 = −0.0169,

k ≡ y′ψ0ζ0 = −0.029, h ≡ φ2
0 = 0.008 and g ≡ φ′3

0 =
−9 × 10−6, the following mass ratios are obtained, md :
ms : mb & θ4.7

c : θ2.7

c : 1, mu : mc : mt & θ8

c : θ3.2

c : 1,
with θc &

√

md/ms & 0.225. (These ratios in terms
of θc coincide with those give in [15].) We have also
taken yt = 1 and ybφ0ζ0 & mb/mt & 0.011. As a result
of the GJ relations, realistic charged lepton masses are
obtained. Making use of these parameters, the complex
CKM matrix is,







0.975e−i26.8o

0.225ei21.1o

0.00293ei164o

0.224ei124o

0.974e−i8.19o

0.032ei180o

0.00557ei103o

0.0317e−i7.33o

0.999






. (27)

The values for |VCKM | elements are in agreement with
current experimental values. The predictions of our
model for the angles in the unitarity triangle and the
Jarlskog invariant in the quark sector are,

β ≡ arg

(

−VcdV ∗
cb

VtdV ∗
tb

)

= 21.3o, sin 2β = 0.676 , (28)

α ≡ arg

(

−VtdV ∗
tb

VudV ∗
ub

)

= 114o , (29)

γ ≡ arg

(

−VudV ∗
ub

VcdV ∗
cb

)

= δq = 44.9o , (30)

J ≡ Im(VudVcbV
∗
ubV

∗
cs) = 1.45 × 10−5 , (31)

where δq is the CP phase in the standard parametriza-
tion. In terms of the Wolfenstein parameters, we have

Form diagonalizable: 
-- no adjustable parameters
-- neutrino mixing from CG coefficients!

General conditions for Form Diagonalizablility 
in seesaw: M.-C. Chen, S. F. King, arXiv:0903.0125

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1

Λ2
ytsH5T3Taψζ +

1

Λ2
ycH5TaTaφ

2 +
1

Λ3
yuH5TaTaφ

′3 (4)

LTF =
1

Λ2
ybH

′
5FT3φζ +

1

Λ3

[

ys∆45FTaφψN + ydH
′
5FTaφ

2ψ′

]

(5)

LFF =
1

MxΛ

[

λ1H5H5F F ξ + λ2H5H5F Fη

]

, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈

ξ
〉

= ξ0Λ











1

1

1











,
〈

φ′
〉

= φ′
0Λ











1

1

1











, (7)

(d)T −→ GT :
〈

φ
〉

= φ0Λ











1

0

0











,
〈

ψ
〉

= ψ0Λ





1

0



 (8)

(d)T −→ nothing :
〈

ψ′
〉

= ψ′
0Λ





1

1



 (9)

(d)T −→ GS :
〈

ζ
〉

= ζ0Λ,
〈

N
〉

= N0Λ (10)

(d)T − invariant :
〈

η
〉

= uΛ (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [10],

TST 2 =
1

3











−1 2 2

2 −1 2

2 2 −1











, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [10].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4



Up Quark Sector
• Operators:

• top mass: allowed by T′

• lighter family acquire masses thru operators with higher dimensionality

➡ dynamical origin of mass hierarchy

• symmetry breaking:

• Mass matrix:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,
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12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
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LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)
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]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar
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〈
ξ
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〈
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= u (11)
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sentation is given by [9],

TST 2 =
1
3
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−1 2 2
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


, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.
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while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [10].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.
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while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation
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We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

Down Quark Sector

• operators:

• generation of b-quark mass: breaking of  (d)T : dynamical origin for 
hierarchy between mb and mt 

• lighter family acquire masses thru operators with higher dimensionality

! dynamical origin of mass hierarchy

• symmetry breaking:

• mass matrix:

• consider 2nd, 3rd families only:   TBM exact

• Georgi-Jarlskog relations:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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H5T3Ta ψ′, ψ

ψφ, ψφ′, ψ′φ, ψ′φ′, ψ′ζ, ψ′N, ψN

ψ3, ψψ′2, ψφ2, ψφ′2, ψφζ, ψφ′ζ, ψ′3, ψ′ψ2, ψ′φ2, ψ′φ′2, ψ′φζ, ψ′φ′ζ,

ψφN,ψφ′N, ψ′φN,ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψξφ, ψξφ′, ψξζ, ψ′ξ2 ψ′ξφ, ψ′ξφ′, ψ′ξζ, ψξN, ψ′ξN, ψ′η, ψφη, ψφ′η, ψξη,

ψ′φη, ψ′φ′η, ψ′ξη, ψη, ψφη, ψφ′η, ψ′φη, ψ′φ′η, ψφη, ψφ′η, ψ′φη, ψ′φ′η

H5TaTa φ, φ′

φ′2, ψ2, ψ′2, φφ′, ψψ′

φ3, φ2ζ, φζ2, φ′2ζ, φ′ζ2,φφ′ζ, φφ′2, φ′φ2, φN2, φ′N2, φ′2N, φφ′N, φNζ, φ′Nζ

ξ, ξ2, ξζ, ξN, ξη, ξ2, ξφ, ξφ′, ξ3, ξ2ζ, ξ2η, ξ2ζ, ξNζ, ξNη, ξζη, ξφ2, ξφ′2, ξφφ′,

ξ2φ, ξ2φ′, ξφN, ξφη, ξφζ, ξφ′N, ξφ′η, ξφ′ζ, φ2η, φη2, φηN, φηζ, φ′η2, φ′ηN,

φ′ηζ,φη, φ′η, ξN2, ξη2, ξζ2

H5FT3 φ, φ′

ψ2, φ2, φ′2, φ′φ, ψ′2, ψψ′, φ′ζ, φ′N, φN

φ3, φ′3, φ2φ′, φφ′2, φζ2, φ′ζ2,φψ2, φ′ψ′2, ζψ2, ζψ′2, φ′ψ2, φψ2,

φN2, φ′N2, φNζ, φ′Nζ, Nψ2, ζψ2, ζψψ′, Nψψ′

ξ, ξ2, ξN, ξζ, ξη, ξφ, ξφ′, ξ3, ξ2N, ξ2ζ, ξ2η, ξ2φ, ξ2φ′, ξφ2,

ξφ′2, ξφφ′, ξφN, ξφζ, ξφη, ξφ′N, ξφ′ζ, ξφ′η, φ′η, φη2, φηN, φηζ, φ′η2, φ′ηN, φ′ηζ, ηψ2,

ηψ′2, φη, φηN, φηζ, φ′η2, φ′ηN, ηψψ′

H5FTa ψ, ψ′

ψφ′, ψ′φ, ψ′φ′, φψ

ψφ2, ψφζ, ψ′φζ, ψφ′2, ψ′φ′2, ψφφ′, ψ′φφ′, ψφ′ζ, ψ′φ′ζ, ψφN, ψ′φN, ψφ′N, ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψ′ξ2, ψξφ, ψξφ′, ψ′ξφ, ψ′ξφ′,

ψξN, ψξη,ψξζ, ψ′ξζ, ψ′ξη, ψ′ξN, ψφη, ψ′φη, ψ′φ′η, ψφ′η, ψ′φ′η, ψφη, ψ′φη

TABLE II: Additional operators that are allowed by the SU(5) × (d)T symmetry up to dim-7. For each

operator shown above, there is a corresponding one with H5 ↔ ∆45.

Upon the breaking of (d)T → GT, the operator ∆45FTaφN contributes to the (22) element in Md, e,

and thus gives rise to ms and mµ. As this operator involves ∆45, the GJ relation for the second

family, mµ $ 3ms is obtained. If no further symmetry breaking takes place, the first generation

masses, md and me vanishes. At this stage, the diagonalization mass matrix for the charged leptons

(and down type quark) is identity, and hence the the tri-bimaximal mixing matrix is exact.

To obtain the correct mass relation for the first generation, it inevitably calls for flavor mixing

in the down quark sector, which then leads to corrections to the tri-bimaximal mixing pattern.

6
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0.
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

corrections to TBM

Down Quark Sector

• operators:

• generation of b-quark mass: breaking of  (d)T : dynamical origin for 
hierarchy between mb and mt 

• lighter family acquire masses thru operators with higher dimensionality

! dynamical origin of mass hierarchy

• symmetry breaking:

• mass matrix:

• consider 2nd, 3rd families only:   TBM exact

• Georgi-Jarlskog relations:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1


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,

〈
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
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, (7)
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〈
φ
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
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0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

H5T3Ta ψ′, ψ

ψφ, ψφ′, ψ′φ, ψ′φ′, ψ′ζ, ψ′N, ψN

ψ3, ψψ′2, ψφ2, ψφ′2, ψφζ, ψφ′ζ, ψ′3, ψ′ψ2, ψ′φ2, ψ′φ′2, ψ′φζ, ψ′φ′ζ,

ψφN,ψφ′N, ψ′φN,ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψξφ, ψξφ′, ψξζ, ψ′ξ2 ψ′ξφ, ψ′ξφ′, ψ′ξζ, ψξN, ψ′ξN, ψ′η, ψφη, ψφ′η, ψξη,

ψ′φη, ψ′φ′η, ψ′ξη, ψη, ψφη, ψφ′η, ψ′φη, ψ′φ′η, ψφη, ψφ′η, ψ′φη, ψ′φ′η

H5TaTa φ, φ′

φ′2, ψ2, ψ′2, φφ′, ψψ′

φ3, φ2ζ, φζ2, φ′2ζ, φ′ζ2,φφ′ζ, φφ′2, φ′φ2, φN2, φ′N2, φ′2N, φφ′N, φNζ, φ′Nζ

ξ, ξ2, ξζ, ξN, ξη, ξ2, ξφ, ξφ′, ξ3, ξ2ζ, ξ2η, ξ2ζ, ξNζ, ξNη, ξζη, ξφ2, ξφ′2, ξφφ′,

ξ2φ, ξ2φ′, ξφN, ξφη, ξφζ, ξφ′N, ξφ′η, ξφ′ζ, φ2η, φη2, φηN, φηζ, φ′η2, φ′ηN,

φ′ηζ,φη, φ′η, ξN2, ξη2, ξζ2

H5FT3 φ, φ′

ψ2, φ2, φ′2, φ′φ, ψ′2, ψψ′, φ′ζ, φ′N, φN

φ3, φ′3, φ2φ′, φφ′2, φζ2, φ′ζ2,φψ2, φ′ψ′2, ζψ2, ζψ′2, φ′ψ2, φψ2,

φN2, φ′N2, φNζ, φ′Nζ, Nψ2, ζψ2, ζψψ′, Nψψ′

ξ, ξ2, ξN, ξζ, ξη, ξφ, ξφ′, ξ3, ξ2N, ξ2ζ, ξ2η, ξ2φ, ξ2φ′, ξφ2,

ξφ′2, ξφφ′, ξφN, ξφζ, ξφη, ξφ′N, ξφ′ζ, ξφ′η, φ′η, φη2, φηN, φηζ, φ′η2, φ′ηN, φ′ηζ, ηψ2,

ηψ′2, φη, φηN, φηζ, φ′η2, φ′ηN, ηψψ′

H5FTa ψ, ψ′

ψφ′, ψ′φ, ψ′φ′, φψ

ψφ2, ψφζ, ψ′φζ, ψφ′2, ψ′φ′2, ψφφ′, ψ′φφ′, ψφ′ζ, ψ′φ′ζ, ψφN, ψ′φN, ψφ′N, ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψ′ξ2, ψξφ, ψξφ′, ψ′ξφ, ψ′ξφ′,

ψξN, ψξη,ψξζ, ψ′ξζ, ψ′ξη, ψ′ξN, ψφη, ψ′φη, ψ′φ′η, ψφ′η, ψ′φ′η, ψφη, ψ′φη

TABLE II: Additional operators that are allowed by the SU(5) × (d)T symmetry up to dim-7. For each

operator shown above, there is a corresponding one with H5 ↔ ∆45.

Upon the breaking of (d)T → GT, the operator ∆45FTaφN contributes to the (22) element in Md, e,

and thus gives rise to ms and mµ. As this operator involves ∆45, the GJ relation for the second

family, mµ $ 3ms is obtained. If no further symmetry breaking takes place, the first generation

masses, md and me vanishes. At this stage, the diagonalization mass matrix for the charged leptons

(and down type quark) is identity, and hence the the tri-bimaximal mixing matrix is exact.

To obtain the correct mass relation for the first generation, it inevitably calls for flavor mixing

in the down quark sector, which then leads to corrections to the tri-bimaximal mixing pattern.
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The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo

7

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

corrections to TBM

2

T3 Ta F H5 H ′
5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z′
12 ω ω4 ω8 ω10 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Field content of our model. The Z12 charges are
given in terms of the parameter ω = eiπ/6.

gauge anomalies automatically [12, 13]. In addition to
the SU(5)×T ′ symmetry, we further impose a Z12×Z ′

12

symmetry. Due to the Z12×Z ′
12 symmetry, only nine op-

erators are allowed in our model up to mass dimension-7
in the Yukawa sector. The discrete symmetries of our
model allow the lighter generation masses to arise only
at higher mass dimensionality, and thus providing a dy-
namical origin of the mass hierarchy.

The Lagrangian of the Yukawa sector of the model is
given by,

LYuk = LTT + LTF + LFF + h.c. , (3)

−LTT = ytH5T3T3 +
1

Λ2
H5

[

ytsT3Taψζ

+ycTaTbφ
2

]

+
1

Λ3
yuH5TaTbφ

′3 , (4)

−LTF =
1

Λ2
ybH

′
5
FT3φζ +

1

Λ3

[

ys∆45FTaφψN

+ydH5
′FTaφ

2ψ′

]

, (5)

−LFF =
1

ΛMX

[

λ1H5H5FF ξ + λ2H5H5FFη

]

, (6)

which is invariant under SU(5) × T ′ and it is CP non-
invariant. Here the parameter Λ is the cutoff scale of
the T ′ symmetry while MX is the scale where lepton
number violating operators are generated. Note that all
Yukawa coupling constants, yx, in the Lagrangian are
real parameters. The T ′ flavon fields acquire vacuum
expectation values along the following direction,

〈ξ〉 =





1
1
1



 ξ0Λ , 〈φ′〉 =





1
1
1



 φ′
0Λ , (7)

〈φ〉 =





0
0
1



φ0Λ , 〈ψ〉 =

(

1
0

)

ψ′
0Λ , (8)

〈ψ′〉 =

(

1
1

)

ψ′
0Λ , (9)

〈ζ〉 = ζ0Λ , 〈N〉 = N0Λ , 〈η〉 = u0Λ . (10)

Note that all the expectation values are real.
In terms of the T ′ and SU(5) component fields, the

above Lagrangian gives the following Yukawa interactions

for the charged fermions in the weak charged current in-
teraction eigenstates,

− LYuk ⊃ UR,i(Mu)ijQL,j + DR,i(Md)ijQL,j

+ER,i(Me)ij'L,j + h.c. , (11)

where QL denotes the quark doublets while UR and DR

denotes the iso-singet up- and down-type quarks, with
i and j being the generation indices. Similarly, 'L and
ER denote the iso-doublet and singlet charged leptons,
respectively. The matrices Mu, Md and Me, upon the
breaking of T ′ and the electroweak symmetry, are given
in terms of seven parameters by

Mu =







iφ′3
0 (1−i

2
)φ′3

0 0

(1−i
2

)φ′3
0 φ′3

0 + (1 − i
2
)φ2

0 y′ψ0ζ0

0 y′ψ0ζ0 1






ytvu, (12)

Md =







0 (1 + i)φ0ψ′
0 0

−(1 − i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0






ydvdφ0 , (13)

Me =







0 −(1 − i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0






ydvdφ0 ,

(14)

which manifest the SU(5) relation, Md = MT
e , except for

the factor of −3 in the (22) entry of Me, due to the SU(5)
CG coefficient through the coupling to ∆45. In addition
to this −3 factor, the Georgi-Jarlskog (GJ) relations also
require Me,d being non-diagonal, leading to corrections to
the TBM pattern [9]. Note that the complex coefficients
in the above mass matrices arise entirely from the CG
coefficients of the T ′ group theory. More precisely, these
complex CG coefficients appear in couplings that involve
the doublet representations of T ′.

The mass matrices Mu,d are diagonalized by,

V †
u,RMuVu,L = diag(mu, mc, mt) and V †

d,RMdVd,L =
diag(md, ms, mb), where the mass eigenvalues on the
right-hand side of the equations are real and positive.
This gives the following weak charged current interaction
in the mass eigenstates of the fermions,

Lcc =
g

2
√

2

[

Wµ
+((x, t)J−

µ ((x, t) + Wµ
−((x, t)J+

µ ((x, t)

]

,

J−
µ = (u′, c′, t

′
)LγµVCKM







d′

s′

b′







L

. (15)

The complex mass matrices Mu,d lead to a complex quark

mixing matrix, VCKM = V †
u,LVd,L.

The interactions in LFF lead to the following neutrino
mass matrix,

Mν =







2ξ0 + u0 −ξ0 −ξ0

−ξ0 2ξ0 −ξ0 + u0

−ξ0 −ξ0 + u0 2ξ0







λv2

Mx
, (16)
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2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

1

2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

T ′ → nothing:

T ′ → GS :

1

2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

T ′ → nothing:

T ′ → GS :

1

2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

T ′ → nothing:

T ′ → GS :

1

both vector and spinorial  
reps involved
     ⇒ complex CG



Down Quark Sector
• operators:

• generation of b-quark mass: breaking of  T′ : dynamical origin for 
hierarchy between mb and mt 

• lighter family acquire masses thru operators with higher dimensionality

➡ dynamical origin of mass hierarchy

• symmetry breaking:

• mass matrix:

• consider 2nd, 3rd families only:   TBM exact

• Georgi-Jarlskog relations:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo

7

H5T3Ta ψ′, ψ

ψφ, ψφ′, ψ′φ, ψ′φ′, ψ′ζ, ψ′N, ψN

ψ3, ψψ′2, ψφ2, ψφ′2, ψφζ, ψφ′ζ, ψ′3, ψ′ψ2, ψ′φ2, ψ′φ′2, ψ′φζ, ψ′φ′ζ,

ψφN,ψφ′N, ψ′φN,ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψξφ, ψξφ′, ψξζ, ψ′ξ2 ψ′ξφ, ψ′ξφ′, ψ′ξζ, ψξN, ψ′ξN, ψ′η, ψφη, ψφ′η, ψξη,

ψ′φη, ψ′φ′η, ψ′ξη, ψη, ψφη, ψφ′η, ψ′φη, ψ′φ′η, ψφη, ψφ′η, ψ′φη, ψ′φ′η

H5TaTa φ, φ′

φ′2, ψ2, ψ′2, φφ′, ψψ′

φ3, φ2ζ, φζ2, φ′2ζ, φ′ζ2,φφ′ζ, φφ′2, φ′φ2, φN2, φ′N2, φ′2N, φφ′N, φNζ, φ′Nζ

ξ, ξ2, ξζ, ξN, ξη, ξ2, ξφ, ξφ′, ξ3, ξ2ζ, ξ2η, ξ2ζ, ξNζ, ξNη, ξζη, ξφ2, ξφ′2, ξφφ′,

ξ2φ, ξ2φ′, ξφN, ξφη, ξφζ, ξφ′N, ξφ′η, ξφ′ζ, φ2η, φη2, φηN, φηζ, φ′η2, φ′ηN,

φ′ηζ,φη, φ′η, ξN2, ξη2, ξζ2

H5FT3 φ, φ′

ψ2, φ2, φ′2, φ′φ, ψ′2, ψψ′, φ′ζ, φ′N, φN

φ3, φ′3, φ2φ′, φφ′2, φζ2, φ′ζ2,φψ2, φ′ψ′2, ζψ2, ζψ′2, φ′ψ2, φψ2,

φN2, φ′N2, φNζ, φ′Nζ, Nψ2, ζψ2, ζψψ′, Nψψ′

ξ, ξ2, ξN, ξζ, ξη, ξφ, ξφ′, ξ3, ξ2N, ξ2ζ, ξ2η, ξ2φ, ξ2φ′, ξφ2,

ξφ′2, ξφφ′, ξφN, ξφζ, ξφη, ξφ′N, ξφ′ζ, ξφ′η, φ′η, φη2, φηN, φηζ, φ′η2, φ′ηN, φ′ηζ, ηψ2,

ηψ′2, φη, φηN, φηζ, φ′η2, φ′ηN, ηψψ′

H5FTa ψ, ψ′

ψφ′, ψ′φ, ψ′φ′, φψ

ψφ2, ψφζ, ψ′φζ, ψφ′2, ψ′φ′2, ψφφ′, ψ′φφ′, ψφ′ζ, ψ′φ′ζ, ψφN, ψ′φN, ψφ′N, ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψ′ξ2, ψξφ, ψξφ′, ψ′ξφ, ψ′ξφ′,

ψξN, ψξη,ψξζ, ψ′ξζ, ψ′ξη, ψ′ξN, ψφη, ψ′φη, ψ′φ′η, ψφ′η, ψ′φ′η, ψφη, ψ′φη

TABLE II: Additional operators that are allowed by the SU(5) × (d)T symmetry up to dim-7. For each

operator shown above, there is a corresponding one with H5 ↔ ∆45.

Upon the breaking of (d)T → GT, the operator ∆45FTaφN contributes to the (22) element in Md, e,

and thus gives rise to ms and mµ. As this operator involves ∆45, the GJ relation for the second

family, mµ $ 3ms is obtained. If no further symmetry breaking takes place, the first generation

masses, md and me vanishes. At this stage, the diagonalization mass matrix for the charged leptons

(and down type quark) is identity, and hence the the tri-bimaximal mixing matrix is exact.

To obtain the correct mass relation for the first generation, it inevitably calls for flavor mixing

in the down quark sector, which then leads to corrections to the tri-bimaximal mixing pattern.

6

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo

7

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
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−1 2 2

2 −1 2

2 2 −1











, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [10].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

Down Quark Sector

• operators:

• generation of b-quark mass: breaking of  (d)T : dynamical origin for 
hierarchy between mb and mt 

• lighter family acquire masses thru operators with higher dimensionality

! dynamical origin of mass hierarchy

• symmetry breaking:

• mass matrix:

• consider 2nd, 3rd families only:   TBM exact

• Georgi-Jarlskog relations:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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H5T3Ta ψ′, ψ

ψφ, ψφ′, ψ′φ, ψ′φ′, ψ′ζ, ψ′N, ψN

ψ3, ψψ′2, ψφ2, ψφ′2, ψφζ, ψφ′ζ, ψ′3, ψ′ψ2, ψ′φ2, ψ′φ′2, ψ′φζ, ψ′φ′ζ,

ψφN,ψφ′N, ψ′φN,ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψξφ, ψξφ′, ψξζ, ψ′ξ2 ψ′ξφ, ψ′ξφ′, ψ′ξζ, ψξN, ψ′ξN, ψ′η, ψφη, ψφ′η, ψξη,

ψ′φη, ψ′φ′η, ψ′ξη, ψη, ψφη, ψφ′η, ψ′φη, ψ′φ′η, ψφη, ψφ′η, ψ′φη, ψ′φ′η

H5TaTa φ, φ′

φ′2, ψ2, ψ′2, φφ′, ψψ′

φ3, φ2ζ, φζ2, φ′2ζ, φ′ζ2,φφ′ζ, φφ′2, φ′φ2, φN2, φ′N2, φ′2N, φφ′N, φNζ, φ′Nζ

ξ, ξ2, ξζ, ξN, ξη, ξ2, ξφ, ξφ′, ξ3, ξ2ζ, ξ2η, ξ2ζ, ξNζ, ξNη, ξζη, ξφ2, ξφ′2, ξφφ′,

ξ2φ, ξ2φ′, ξφN, ξφη, ξφζ, ξφ′N, ξφ′η, ξφ′ζ, φ2η, φη2, φηN, φηζ, φ′η2, φ′ηN,

φ′ηζ,φη, φ′η, ξN2, ξη2, ξζ2

H5FT3 φ, φ′

ψ2, φ2, φ′2, φ′φ, ψ′2, ψψ′, φ′ζ, φ′N, φN

φ3, φ′3, φ2φ′, φφ′2, φζ2, φ′ζ2,φψ2, φ′ψ′2, ζψ2, ζψ′2, φ′ψ2, φψ2,

φN2, φ′N2, φNζ, φ′Nζ, Nψ2, ζψ2, ζψψ′, Nψψ′

ξ, ξ2, ξN, ξζ, ξη, ξφ, ξφ′, ξ3, ξ2N, ξ2ζ, ξ2η, ξ2φ, ξ2φ′, ξφ2,

ξφ′2, ξφφ′, ξφN, ξφζ, ξφη, ξφ′N, ξφ′ζ, ξφ′η, φ′η, φη2, φηN, φηζ, φ′η2, φ′ηN, φ′ηζ, ηψ2,

ηψ′2, φη, φηN, φηζ, φ′η2, φ′ηN, ηψψ′

H5FTa ψ, ψ′

ψφ′, ψ′φ, ψ′φ′, φψ

ψφ2, ψφζ, ψ′φζ, ψφ′2, ψ′φ′2, ψφφ′, ψ′φφ′, ψφ′ζ, ψ′φ′ζ, ψφN, ψ′φN, ψφ′N, ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψ′ξ2, ψξφ, ψξφ′, ψ′ξφ, ψ′ξφ′,

ψξN, ψξη,ψξζ, ψ′ξζ, ψ′ξη, ψ′ξN, ψφη, ψ′φη, ψ′φ′η, ψφ′η, ψ′φ′η, ψφη, ψ′φη

TABLE II: Additional operators that are allowed by the SU(5) × (d)T symmetry up to dim-7. For each

operator shown above, there is a corresponding one with H5 ↔ ∆45.

Upon the breaking of (d)T → GT, the operator ∆45FTaφN contributes to the (22) element in Md, e,

and thus gives rise to ms and mµ. As this operator involves ∆45, the GJ relation for the second

family, mµ $ 3ms is obtained. If no further symmetry breaking takes place, the first generation

masses, md and me vanishes. At this stage, the diagonalization mass matrix for the charged leptons

(and down type quark) is identity, and hence the the tri-bimaximal mixing matrix is exact.

To obtain the correct mass relation for the first generation, it inevitably calls for flavor mixing

in the down quark sector, which then leads to corrections to the tri-bimaximal mixing pattern.

6
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where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.
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control. Note that there is no correction to Md, e given above at least to the order of dim-7.
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4
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corrections to TBM

Down Quark Sector

• operators:

• generation of b-quark mass: breaking of  (d)T : dynamical origin for 
hierarchy between mb and mt 

• lighter family acquire masses thru operators with higher dimensionality

! dynamical origin of mass hierarchy

• symmetry breaking:

• mass matrix:

• consider 2nd, 3rd families only:   TBM exact

• Georgi-Jarlskog relations:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0
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
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where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,
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

iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
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0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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H5T3Ta ψ′, ψ

ψφ, ψφ′, ψ′φ, ψ′φ′, ψ′ζ, ψ′N, ψN

ψ3, ψψ′2, ψφ2, ψφ′2, ψφζ, ψφ′ζ, ψ′3, ψ′ψ2, ψ′φ2, ψ′φ′2, ψ′φζ, ψ′φ′ζ,

ψφN,ψφ′N, ψ′φN,ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψξφ, ψξφ′, ψξζ, ψ′ξ2 ψ′ξφ, ψ′ξφ′, ψ′ξζ, ψξN, ψ′ξN, ψ′η, ψφη, ψφ′η, ψξη,

ψ′φη, ψ′φ′η, ψ′ξη, ψη, ψφη, ψφ′η, ψ′φη, ψ′φ′η, ψφη, ψφ′η, ψ′φη, ψ′φ′η

H5TaTa φ, φ′

φ′2, ψ2, ψ′2, φφ′, ψψ′

φ3, φ2ζ, φζ2, φ′2ζ, φ′ζ2,φφ′ζ, φφ′2, φ′φ2, φN2, φ′N2, φ′2N, φφ′N, φNζ, φ′Nζ

ξ, ξ2, ξζ, ξN, ξη, ξ2, ξφ, ξφ′, ξ3, ξ2ζ, ξ2η, ξ2ζ, ξNζ, ξNη, ξζη, ξφ2, ξφ′2, ξφφ′,

ξ2φ, ξ2φ′, ξφN, ξφη, ξφζ, ξφ′N, ξφ′η, ξφ′ζ, φ2η, φη2, φηN, φηζ, φ′η2, φ′ηN,

φ′ηζ,φη, φ′η, ξN2, ξη2, ξζ2

H5FT3 φ, φ′

ψ2, φ2, φ′2, φ′φ, ψ′2, ψψ′, φ′ζ, φ′N, φN

φ3, φ′3, φ2φ′, φφ′2, φζ2, φ′ζ2,φψ2, φ′ψ′2, ζψ2, ζψ′2, φ′ψ2, φψ2,

φN2, φ′N2, φNζ, φ′Nζ, Nψ2, ζψ2, ζψψ′, Nψψ′

ξ, ξ2, ξN, ξζ, ξη, ξφ, ξφ′, ξ3, ξ2N, ξ2ζ, ξ2η, ξ2φ, ξ2φ′, ξφ2,

ξφ′2, ξφφ′, ξφN, ξφζ, ξφη, ξφ′N, ξφ′ζ, ξφ′η, φ′η, φη2, φηN, φηζ, φ′η2, φ′ηN, φ′ηζ, ηψ2,

ηψ′2, φη, φηN, φηζ, φ′η2, φ′ηN, ηψψ′

H5FTa ψ, ψ′

ψφ′, ψ′φ, ψ′φ′, φψ

ψφ2, ψφζ, ψ′φζ, ψφ′2, ψ′φ′2, ψφφ′, ψ′φφ′, ψφ′ζ, ψ′φ′ζ, ψφN, ψ′φN, ψφ′N, ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψ′ξ2, ψξφ, ψξφ′, ψ′ξφ, ψ′ξφ′,

ψξN, ψξη,ψξζ, ψ′ξζ, ψ′ξη, ψ′ξN, ψφη, ψ′φη, ψ′φ′η, ψφ′η, ψ′φ′η, ψφη, ψ′φη

TABLE II: Additional operators that are allowed by the SU(5) × (d)T symmetry up to dim-7. For each

operator shown above, there is a corresponding one with H5 ↔ ∆45.

Upon the breaking of (d)T → GT, the operator ∆45FTaφN contributes to the (22) element in Md, e,

and thus gives rise to ms and mµ. As this operator involves ∆45, the GJ relation for the second

family, mµ $ 3ms is obtained. If no further symmetry breaking takes place, the first generation

masses, md and me vanishes. At this stage, the diagonalization mass matrix for the charged leptons

(and down type quark) is identity, and hence the the tri-bimaximal mixing matrix is exact.

To obtain the correct mass relation for the first generation, it inevitably calls for flavor mixing

in the down quark sector, which then leads to corrections to the tri-bimaximal mixing pattern.
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between sin2 θ12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,
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0 ψ0N0 0
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0 ζ0


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0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =
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1−i
2 φ′3

0 0
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2 φ′3

0 φ′3
0 + (1− i
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
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where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
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md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo

7

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

corrections to TBM

2

T3 Ta F H5 H ′
5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z′
12 ω ω4 ω8 ω10 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Field content of our model. The Z12 charges are
given in terms of the parameter ω = eiπ/6.

gauge anomalies automatically [12, 13]. In addition to
the SU(5)×T ′ symmetry, we further impose a Z12×Z ′

12

symmetry. Due to the Z12×Z ′
12 symmetry, only nine op-

erators are allowed in our model up to mass dimension-7
in the Yukawa sector. The discrete symmetries of our
model allow the lighter generation masses to arise only
at higher mass dimensionality, and thus providing a dy-
namical origin of the mass hierarchy.

The Lagrangian of the Yukawa sector of the model is
given by,

LYuk = LTT + LTF + LFF + h.c. , (3)

−LTT = ytH5T3T3 +
1

Λ2
H5

[

ytsT3Taψζ

+ycTaTbφ
2

]

+
1

Λ3
yuH5TaTbφ

′3 , (4)

−LTF =
1

Λ2
ybH

′
5
FT3φζ +

1

Λ3

[

ys∆45FTaφψN

+ydH5
′FTaφ

2ψ′

]

, (5)

−LFF =
1

ΛMX

[

λ1H5H5FF ξ + λ2H5H5FFη

]

, (6)

which is invariant under SU(5) × T ′ and it is CP non-
invariant. Here the parameter Λ is the cutoff scale of
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1
1
1
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

1
1
1



 φ′
0Λ , (7)
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



0
0
1


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(

1
0

)
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1
1
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



iφ′3
0 (1−i

2
)φ′3

0 0

(1−i
2

)φ′3
0 φ′3

0 + (1 − i
2
)φ2

0 y′ψ0ζ0

0 y′ψ0ζ0 1






ytvu, (12)
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



0 (1 + i)φ0ψ′
0 0
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0 ζ0






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


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


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Lcc =
g

2
√

2

[

Wµ
+((x, t)J−

µ ((x, t) + Wµ
−((x, t)J+

µ ((x, t)

]

,

J−
µ = (u′, c′, t

′
)LγµVCKM







d′

s′

b′







L

. (15)

The complex mass matrices Mu,d lead to a complex quark

mixing matrix, VCKM = V †
u,LVd,L.
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





2ξ0 + u0 −ξ0 −ξ0

−ξ0 2ξ0 −ξ0 + u0

−ξ0 −ξ0 + u0 2ξ0







λv2

Mx
, (16)
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The Model

• (d)T breaking:

! charged fermion sector

The Lagrangian of the model is given as follows,
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, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,
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while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [10].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.
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are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈

ξ
〉

= ξ0Λ











1

1

1











,
〈

φ′
〉

= φ′
0Λ











1

1

1











, (7)

(d)T −→ GT :
〈

φ
〉

= φ0Λ











1

0

0











,
〈

ψ
〉

= ψ0Λ





1

0



 (8)

(d)T −→ nothing :
〈

ψ′
〉

= ψ′
0Λ





1

1



 (9)

(d)T −→ GS :
〈

ζ
〉

= ζ0Λ,
〈

N
〉

= N0Λ (10)

(d)T − invariant :
〈

η
〉

= uΛ (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [10],

TST 2 =
1

3











−1 2 2

2 −1 2

2 2 −1











, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [10].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

Down Quark Sector

• operators:

• generation of b-quark mass: breaking of  (d)T : dynamical origin for 
hierarchy between mb and mt 

• lighter family acquire masses thru operators with higher dimensionality

! dynamical origin of mass hierarchy

• symmetry breaking:

• mass matrix:

• consider 2nd, 3rd families only:   TBM exact

• Georgi-Jarlskog relations:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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H5T3Ta ψ′, ψ

ψφ, ψφ′, ψ′φ, ψ′φ′, ψ′ζ, ψ′N, ψN

ψ3, ψψ′2, ψφ2, ψφ′2, ψφζ, ψφ′ζ, ψ′3, ψ′ψ2, ψ′φ2, ψ′φ′2, ψ′φζ, ψ′φ′ζ,

ψφN,ψφ′N, ψ′φN,ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψξφ, ψξφ′, ψξζ, ψ′ξ2 ψ′ξφ, ψ′ξφ′, ψ′ξζ, ψξN, ψ′ξN, ψ′η, ψφη, ψφ′η, ψξη,

ψ′φη, ψ′φ′η, ψ′ξη, ψη, ψφη, ψφ′η, ψ′φη, ψ′φ′η, ψφη, ψφ′η, ψ′φη, ψ′φ′η

H5TaTa φ, φ′

φ′2, ψ2, ψ′2, φφ′, ψψ′

φ3, φ2ζ, φζ2, φ′2ζ, φ′ζ2,φφ′ζ, φφ′2, φ′φ2, φN2, φ′N2, φ′2N, φφ′N, φNζ, φ′Nζ

ξ, ξ2, ξζ, ξN, ξη, ξ2, ξφ, ξφ′, ξ3, ξ2ζ, ξ2η, ξ2ζ, ξNζ, ξNη, ξζη, ξφ2, ξφ′2, ξφφ′,

ξ2φ, ξ2φ′, ξφN, ξφη, ξφζ, ξφ′N, ξφ′η, ξφ′ζ, φ2η, φη2, φηN, φηζ, φ′η2, φ′ηN,

φ′ηζ,φη, φ′η, ξN2, ξη2, ξζ2

H5FT3 φ, φ′

ψ2, φ2, φ′2, φ′φ, ψ′2, ψψ′, φ′ζ, φ′N, φN

φ3, φ′3, φ2φ′, φφ′2, φζ2, φ′ζ2,φψ2, φ′ψ′2, ζψ2, ζψ′2, φ′ψ2, φψ2,

φN2, φ′N2, φNζ, φ′Nζ, Nψ2, ζψ2, ζψψ′, Nψψ′

ξ, ξ2, ξN, ξζ, ξη, ξφ, ξφ′, ξ3, ξ2N, ξ2ζ, ξ2η, ξ2φ, ξ2φ′, ξφ2,

ξφ′2, ξφφ′, ξφN, ξφζ, ξφη, ξφ′N, ξφ′ζ, ξφ′η, φ′η, φη2, φηN, φηζ, φ′η2, φ′ηN, φ′ηζ, ηψ2,

ηψ′2, φη, φηN, φηζ, φ′η2, φ′ηN, ηψψ′

H5FTa ψ, ψ′

ψφ′, ψ′φ, ψ′φ′, φψ

ψφ2, ψφζ, ψ′φζ, ψφ′2, ψ′φ′2, ψφφ′, ψ′φφ′, ψφ′ζ, ψ′φ′ζ, ψφN, ψ′φN, ψφ′N, ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψ′ξ2, ψξφ, ψξφ′, ψ′ξφ, ψ′ξφ′,

ψξN, ψξη,ψξζ, ψ′ξζ, ψ′ξη, ψ′ξN, ψφη, ψ′φη, ψ′φ′η, ψφ′η, ψ′φ′η, ψφη, ψ′φη

TABLE II: Additional operators that are allowed by the SU(5) × (d)T symmetry up to dim-7. For each

operator shown above, there is a corresponding one with H5 ↔ ∆45.

Upon the breaking of (d)T → GT, the operator ∆45FTaφN contributes to the (22) element in Md, e,

and thus gives rise to ms and mµ. As this operator involves ∆45, the GJ relation for the second

family, mµ $ 3ms is obtained. If no further symmetry breaking takes place, the first generation

masses, md and me vanishes. At this stage, the diagonalization mass matrix for the charged leptons

(and down type quark) is identity, and hence the the tri-bimaximal mixing matrix is exact.

To obtain the correct mass relation for the first generation, it inevitably calls for flavor mixing

in the down quark sector, which then leads to corrections to the tri-bimaximal mixing pattern.

6
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where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally
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control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.
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〈
ψ

〉
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and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =
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

iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0
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
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where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
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mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4
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corrections to TBM

Down Quark Sector

• operators:

• generation of b-quark mass: breaking of  (d)T : dynamical origin for 
hierarchy between mb and mt 

• lighter family acquire masses thru operators with higher dimensionality

! dynamical origin of mass hierarchy

• symmetry breaking:

• mass matrix:

• consider 2nd, 3rd families only:   TBM exact

• Georgi-Jarlskog relations:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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H5T3Ta ψ′, ψ

ψφ, ψφ′, ψ′φ, ψ′φ′, ψ′ζ, ψ′N, ψN

ψ3, ψψ′2, ψφ2, ψφ′2, ψφζ, ψφ′ζ, ψ′3, ψ′ψ2, ψ′φ2, ψ′φ′2, ψ′φζ, ψ′φ′ζ,

ψφN,ψφ′N, ψ′φN,ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψξφ, ψξφ′, ψξζ, ψ′ξ2 ψ′ξφ, ψ′ξφ′, ψ′ξζ, ψξN, ψ′ξN, ψ′η, ψφη, ψφ′η, ψξη,

ψ′φη, ψ′φ′η, ψ′ξη, ψη, ψφη, ψφ′η, ψ′φη, ψ′φ′η, ψφη, ψφ′η, ψ′φη, ψ′φ′η

H5TaTa φ, φ′

φ′2, ψ2, ψ′2, φφ′, ψψ′

φ3, φ2ζ, φζ2, φ′2ζ, φ′ζ2,φφ′ζ, φφ′2, φ′φ2, φN2, φ′N2, φ′2N, φφ′N, φNζ, φ′Nζ

ξ, ξ2, ξζ, ξN, ξη, ξ2, ξφ, ξφ′, ξ3, ξ2ζ, ξ2η, ξ2ζ, ξNζ, ξNη, ξζη, ξφ2, ξφ′2, ξφφ′,

ξ2φ, ξ2φ′, ξφN, ξφη, ξφζ, ξφ′N, ξφ′η, ξφ′ζ, φ2η, φη2, φηN, φηζ, φ′η2, φ′ηN,

φ′ηζ,φη, φ′η, ξN2, ξη2, ξζ2

H5FT3 φ, φ′

ψ2, φ2, φ′2, φ′φ, ψ′2, ψψ′, φ′ζ, φ′N, φN

φ3, φ′3, φ2φ′, φφ′2, φζ2, φ′ζ2,φψ2, φ′ψ′2, ζψ2, ζψ′2, φ′ψ2, φψ2,

φN2, φ′N2, φNζ, φ′Nζ, Nψ2, ζψ2, ζψψ′, Nψψ′

ξ, ξ2, ξN, ξζ, ξη, ξφ, ξφ′, ξ3, ξ2N, ξ2ζ, ξ2η, ξ2φ, ξ2φ′, ξφ2,

ξφ′2, ξφφ′, ξφN, ξφζ, ξφη, ξφ′N, ξφ′ζ, ξφ′η, φ′η, φη2, φηN, φηζ, φ′η2, φ′ηN, φ′ηζ, ηψ2,

ηψ′2, φη, φηN, φηζ, φ′η2, φ′ηN, ηψψ′

H5FTa ψ, ψ′

ψφ′, ψ′φ, ψ′φ′, φψ

ψφ2, ψφζ, ψ′φζ, ψφ′2, ψ′φ′2, ψφφ′, ψ′φφ′, ψφ′ζ, ψ′φ′ζ, ψφN, ψ′φN, ψφ′N, ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψ′ξ2, ψξφ, ψξφ′, ψ′ξφ, ψ′ξφ′,

ψξN, ψξη,ψξζ, ψ′ξζ, ψ′ξη, ψ′ξN, ψφη, ψ′φη, ψ′φ′η, ψφ′η, ψ′φ′η, ψφη, ψ′φη

TABLE II: Additional operators that are allowed by the SU(5) × (d)T symmetry up to dim-7. For each

operator shown above, there is a corresponding one with H5 ↔ ∆45.

Upon the breaking of (d)T → GT, the operator ∆45FTaφN contributes to the (22) element in Md, e,

and thus gives rise to ms and mµ. As this operator involves ∆45, the GJ relation for the second

family, mµ $ 3ms is obtained. If no further symmetry breaking takes place, the first generation

masses, md and me vanishes. At this stage, the diagonalization mass matrix for the charged leptons

(and down type quark) is identity, and hence the the tri-bimaximal mixing matrix is exact.

To obtain the correct mass relation for the first generation, it inevitably calls for flavor mixing

in the down quark sector, which then leads to corrections to the tri-bimaximal mixing pattern.
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where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
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and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,
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where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo

7

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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corrections to TBM

2

T3 Ta F H5 H ′
5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z′
12 ω ω4 ω8 ω10 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Field content of our model. The Z12 charges are
given in terms of the parameter ω = eiπ/6.

gauge anomalies automatically [12, 13]. In addition to
the SU(5)×T ′ symmetry, we further impose a Z12×Z ′

12

symmetry. Due to the Z12×Z ′
12 symmetry, only nine op-
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2
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−LTF =
1

Λ2
ybH

′
5
FT3φζ +

1

Λ3
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ys∆45FTaφψN
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′FTaφ

2ψ′

]

, (5)

−LFF =
1

ΛMX
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]
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invariant. Here the parameter Λ is the cutoff scale of
the T ′ symmetry while MX is the scale where lepton
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1
1
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1
1
1



 φ′
0Λ , (7)
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

0
0
1
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(

1
0

)
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1
1
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Note that all the expectation values are real.
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2
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0 0
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2
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2
)φ2

0 y′ψ0ζ0

0 y′ψ0ζ0 1
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


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the TBM pattern [9]. Note that the complex coefficients
in the above mass matrices arise entirely from the CG
coefficients of the T ′ group theory. More precisely, these
complex CG coefficients appear in couplings that involve
the doublet representations of T ′.

The mass matrices Mu,d are diagonalized by,

V †
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Lcc =
g

2
√

2

[

Wµ
+((x, t)J−

µ ((x, t) + Wµ
−((x, t)J+

µ ((x, t)

]

,

J−
µ = (u′, c′, t

′
)LγµVCKM







d′

s′

b′







L

. (15)

The complex mass matrices Mu,d lead to a complex quark

mixing matrix, VCKM = V †
u,LVd,L.

The interactions in LFF lead to the following neutrino
mass matrix,

Mν =







2ξ0 + u0 −ξ0 −ξ0

−ξ0 2ξ0 −ξ0 + u0

−ξ0 −ξ0 + u0 2ξ0







λv2

Mx
, (16)
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• (d)T breaking:

! charged fermion sector

The Lagrangian of the model is given as follows,
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where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,
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




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
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


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






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while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation
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presented in a future publication.
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while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [10].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.
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while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation
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We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

Down Quark Sector

• operators:

• generation of b-quark mass: breaking of  (d)T : dynamical origin for 
hierarchy between mb and mt 

• lighter family acquire masses thru operators with higher dimensionality

! dynamical origin of mass hierarchy

• symmetry breaking:

• mass matrix:

• consider 2nd, 3rd families only:   TBM exact

• Georgi-Jarlskog relations:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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H5T3Ta ψ′, ψ

ψφ, ψφ′, ψ′φ, ψ′φ′, ψ′ζ, ψ′N, ψN

ψ3, ψψ′2, ψφ2, ψφ′2, ψφζ, ψφ′ζ, ψ′3, ψ′ψ2, ψ′φ2, ψ′φ′2, ψ′φζ, ψ′φ′ζ,

ψφN,ψφ′N, ψ′φN,ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψξφ, ψξφ′, ψξζ, ψ′ξ2 ψ′ξφ, ψ′ξφ′, ψ′ξζ, ψξN, ψ′ξN, ψ′η, ψφη, ψφ′η, ψξη,

ψ′φη, ψ′φ′η, ψ′ξη, ψη, ψφη, ψφ′η, ψ′φη, ψ′φ′η, ψφη, ψφ′η, ψ′φη, ψ′φ′η

H5TaTa φ, φ′

φ′2, ψ2, ψ′2, φφ′, ψψ′

φ3, φ2ζ, φζ2, φ′2ζ, φ′ζ2,φφ′ζ, φφ′2, φ′φ2, φN2, φ′N2, φ′2N, φφ′N, φNζ, φ′Nζ

ξ, ξ2, ξζ, ξN, ξη, ξ2, ξφ, ξφ′, ξ3, ξ2ζ, ξ2η, ξ2ζ, ξNζ, ξNη, ξζη, ξφ2, ξφ′2, ξφφ′,

ξ2φ, ξ2φ′, ξφN, ξφη, ξφζ, ξφ′N, ξφ′η, ξφ′ζ, φ2η, φη2, φηN, φηζ, φ′η2, φ′ηN,

φ′ηζ,φη, φ′η, ξN2, ξη2, ξζ2

H5FT3 φ, φ′

ψ2, φ2, φ′2, φ′φ, ψ′2, ψψ′, φ′ζ, φ′N, φN

φ3, φ′3, φ2φ′, φφ′2, φζ2, φ′ζ2,φψ2, φ′ψ′2, ζψ2, ζψ′2, φ′ψ2, φψ2,

φN2, φ′N2, φNζ, φ′Nζ, Nψ2, ζψ2, ζψψ′, Nψψ′

ξ, ξ2, ξN, ξζ, ξη, ξφ, ξφ′, ξ3, ξ2N, ξ2ζ, ξ2η, ξ2φ, ξ2φ′, ξφ2,

ξφ′2, ξφφ′, ξφN, ξφζ, ξφη, ξφ′N, ξφ′ζ, ξφ′η, φ′η, φη2, φηN, φηζ, φ′η2, φ′ηN, φ′ηζ, ηψ2,

ηψ′2, φη, φηN, φηζ, φ′η2, φ′ηN, ηψψ′

H5FTa ψ, ψ′

ψφ′, ψ′φ, ψ′φ′, φψ

ψφ2, ψφζ, ψ′φζ, ψφ′2, ψ′φ′2, ψφφ′, ψ′φφ′, ψφ′ζ, ψ′φ′ζ, ψφN, ψ′φN, ψφ′N, ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψ′ξ2, ψξφ, ψξφ′, ψ′ξφ, ψ′ξφ′,

ψξN, ψξη,ψξζ, ψ′ξζ, ψ′ξη, ψ′ξN, ψφη, ψ′φη, ψ′φ′η, ψφ′η, ψ′φ′η, ψφη, ψ′φη

TABLE II: Additional operators that are allowed by the SU(5) × (d)T symmetry up to dim-7. For each

operator shown above, there is a corresponding one with H5 ↔ ∆45.

Upon the breaking of (d)T → GT, the operator ∆45FTaφN contributes to the (22) element in Md, e,

and thus gives rise to ms and mµ. As this operator involves ∆45, the GJ relation for the second

family, mµ $ 3ms is obtained. If no further symmetry breaking takes place, the first generation

masses, md and me vanishes. At this stage, the diagonalization mass matrix for the charged leptons

(and down type quark) is identity, and hence the the tri-bimaximal mixing matrix is exact.

To obtain the correct mass relation for the first generation, it inevitably calls for flavor mixing

in the down quark sector, which then leads to corrections to the tri-bimaximal mixing pattern.

6
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where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally
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control. Note that there is no correction to Md, e given above at least to the order of dim-7.
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(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is
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H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,
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iφ′3
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1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
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
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where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
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mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

corrections to TBM

Down Quark Sector

• operators:

• generation of b-quark mass: breaking of  (d)T : dynamical origin for 
hierarchy between mb and mt 

• lighter family acquire masses thru operators with higher dimensionality

! dynamical origin of mass hierarchy

• symmetry breaking:

• mass matrix:

• consider 2nd, 3rd families only:   TBM exact

• Georgi-Jarlskog relations:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
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= ξ0Λ


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1

1




,

〈
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0Λ





1

1

1
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
, (7)

(d)T −→ GT :
〈
φ
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= φ0Λ


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1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

H5T3Ta ψ′, ψ

ψφ, ψφ′, ψ′φ, ψ′φ′, ψ′ζ, ψ′N, ψN

ψ3, ψψ′2, ψφ2, ψφ′2, ψφζ, ψφ′ζ, ψ′3, ψ′ψ2, ψ′φ2, ψ′φ′2, ψ′φζ, ψ′φ′ζ,

ψφN,ψφ′N, ψ′φN,ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψξφ, ψξφ′, ψξζ, ψ′ξ2 ψ′ξφ, ψ′ξφ′, ψ′ξζ, ψξN, ψ′ξN, ψ′η, ψφη, ψφ′η, ψξη,

ψ′φη, ψ′φ′η, ψ′ξη, ψη, ψφη, ψφ′η, ψ′φη, ψ′φ′η, ψφη, ψφ′η, ψ′φη, ψ′φ′η

H5TaTa φ, φ′

φ′2, ψ2, ψ′2, φφ′, ψψ′

φ3, φ2ζ, φζ2, φ′2ζ, φ′ζ2,φφ′ζ, φφ′2, φ′φ2, φN2, φ′N2, φ′2N, φφ′N, φNζ, φ′Nζ

ξ, ξ2, ξζ, ξN, ξη, ξ2, ξφ, ξφ′, ξ3, ξ2ζ, ξ2η, ξ2ζ, ξNζ, ξNη, ξζη, ξφ2, ξφ′2, ξφφ′,

ξ2φ, ξ2φ′, ξφN, ξφη, ξφζ, ξφ′N, ξφ′η, ξφ′ζ, φ2η, φη2, φηN, φηζ, φ′η2, φ′ηN,

φ′ηζ,φη, φ′η, ξN2, ξη2, ξζ2

H5FT3 φ, φ′

ψ2, φ2, φ′2, φ′φ, ψ′2, ψψ′, φ′ζ, φ′N, φN

φ3, φ′3, φ2φ′, φφ′2, φζ2, φ′ζ2,φψ2, φ′ψ′2, ζψ2, ζψ′2, φ′ψ2, φψ2,

φN2, φ′N2, φNζ, φ′Nζ, Nψ2, ζψ2, ζψψ′, Nψψ′

ξ, ξ2, ξN, ξζ, ξη, ξφ, ξφ′, ξ3, ξ2N, ξ2ζ, ξ2η, ξ2φ, ξ2φ′, ξφ2,

ξφ′2, ξφφ′, ξφN, ξφζ, ξφη, ξφ′N, ξφ′ζ, ξφ′η, φ′η, φη2, φηN, φηζ, φ′η2, φ′ηN, φ′ηζ, ηψ2,

ηψ′2, φη, φηN, φηζ, φ′η2, φ′ηN, ηψψ′

H5FTa ψ, ψ′

ψφ′, ψ′φ, ψ′φ′, φψ

ψφ2, ψφζ, ψ′φζ, ψφ′2, ψ′φ′2, ψφφ′, ψ′φφ′, ψφ′ζ, ψ′φ′ζ, ψφN, ψ′φN, ψφ′N, ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψ′ξ2, ψξφ, ψξφ′, ψ′ξφ, ψ′ξφ′,

ψξN, ψξη,ψξζ, ψ′ξζ, ψ′ξη, ψ′ξN, ψφη, ψ′φη, ψ′φ′η, ψφ′η, ψ′φ′η, ψφη, ψ′φη

TABLE II: Additional operators that are allowed by the SU(5) × (d)T symmetry up to dim-7. For each

operator shown above, there is a corresponding one with H5 ↔ ∆45.

Upon the breaking of (d)T → GT, the operator ∆45FTaφN contributes to the (22) element in Md, e,

and thus gives rise to ms and mµ. As this operator involves ∆45, the GJ relation for the second

family, mµ $ 3ms is obtained. If no further symmetry breaking takes place, the first generation

masses, md and me vanishes. At this stage, the diagonalization mass matrix for the charged leptons

(and down type quark) is identity, and hence the the tri-bimaximal mixing matrix is exact.

To obtain the correct mass relation for the first generation, it inevitably calls for flavor mixing

in the down quark sector, which then leads to corrections to the tri-bimaximal mixing pattern.
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The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,
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

0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)
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0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo

7

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

corrections to TBM

2

T3 Ta F H5 H ′
5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z′
12 ω ω4 ω8 ω10 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Field content of our model. The Z12 charges are
given in terms of the parameter ω = eiπ/6.

gauge anomalies automatically [12, 13]. In addition to
the SU(5)×T ′ symmetry, we further impose a Z12×Z ′

12

symmetry. Due to the Z12×Z ′
12 symmetry, only nine op-

erators are allowed in our model up to mass dimension-7
in the Yukawa sector. The discrete symmetries of our
model allow the lighter generation masses to arise only
at higher mass dimensionality, and thus providing a dy-
namical origin of the mass hierarchy.

The Lagrangian of the Yukawa sector of the model is
given by,

LYuk = LTT + LTF + LFF + h.c. , (3)

−LTT = ytH5T3T3 +
1

Λ2
H5

[

ytsT3Taψζ

+ycTaTbφ
2

]

+
1

Λ3
yuH5TaTbφ

′3 , (4)

−LTF =
1

Λ2
ybH

′
5
FT3φζ +

1

Λ3

[

ys∆45FTaφψN

+ydH5
′FTaφ

2ψ′

]

, (5)

−LFF =
1

ΛMX

[

λ1H5H5FF ξ + λ2H5H5FFη

]

, (6)

which is invariant under SU(5) × T ′ and it is CP non-
invariant. Here the parameter Λ is the cutoff scale of
the T ′ symmetry while MX is the scale where lepton
number violating operators are generated. Note that all
Yukawa coupling constants, yx, in the Lagrangian are
real parameters. The T ′ flavon fields acquire vacuum
expectation values along the following direction,

〈ξ〉 =





1
1
1



 ξ0Λ , 〈φ′〉 =





1
1
1



 φ′
0Λ , (7)

〈φ〉 =





0
0
1



φ0Λ , 〈ψ〉 =

(

1
0

)

ψ′
0Λ , (8)

〈ψ′〉 =

(

1
1

)

ψ′
0Λ , (9)

〈ζ〉 = ζ0Λ , 〈N〉 = N0Λ , 〈η〉 = u0Λ . (10)

Note that all the expectation values are real.
In terms of the T ′ and SU(5) component fields, the

above Lagrangian gives the following Yukawa interactions

for the charged fermions in the weak charged current in-
teraction eigenstates,

− LYuk ⊃ UR,i(Mu)ijQL,j + DR,i(Md)ijQL,j

+ER,i(Me)ij'L,j + h.c. , (11)

where QL denotes the quark doublets while UR and DR

denotes the iso-singet up- and down-type quarks, with
i and j being the generation indices. Similarly, 'L and
ER denote the iso-doublet and singlet charged leptons,
respectively. The matrices Mu, Md and Me, upon the
breaking of T ′ and the electroweak symmetry, are given
in terms of seven parameters by

Mu =







iφ′3
0 (1−i

2
)φ′3

0 0

(1−i
2

)φ′3
0 φ′3

0 + (1 − i
2
)φ2

0 y′ψ0ζ0

0 y′ψ0ζ0 1






ytvu, (12)

Md =







0 (1 + i)φ0ψ′
0 0

−(1 − i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0






ydvdφ0 , (13)

Me =







0 −(1 − i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0






ydvdφ0 ,

(14)

which manifest the SU(5) relation, Md = MT
e , except for

the factor of −3 in the (22) entry of Me, due to the SU(5)
CG coefficient through the coupling to ∆45. In addition
to this −3 factor, the Georgi-Jarlskog (GJ) relations also
require Me,d being non-diagonal, leading to corrections to
the TBM pattern [9]. Note that the complex coefficients
in the above mass matrices arise entirely from the CG
coefficients of the T ′ group theory. More precisely, these
complex CG coefficients appear in couplings that involve
the doublet representations of T ′.

The mass matrices Mu,d are diagonalized by,

V †
u,RMuVu,L = diag(mu, mc, mt) and V †

d,RMdVd,L =
diag(md, ms, mb), where the mass eigenvalues on the
right-hand side of the equations are real and positive.
This gives the following weak charged current interaction
in the mass eigenstates of the fermions,

Lcc =
g

2
√

2

[

Wµ
+((x, t)J−

µ ((x, t) + Wµ
−((x, t)J+

µ ((x, t)

]

,

J−
µ = (u′, c′, t

′
)LγµVCKM







d′

s′

b′







L

. (15)

The complex mass matrices Mu,d lead to a complex quark

mixing matrix, VCKM = V †
u,LVd,L.

The interactions in LFF lead to the following neutrino
mass matrix,

Mν =







2ξ0 + u0 −ξ0 −ξ0

−ξ0 2ξ0 −ξ0 + u0

−ξ0 −ξ0 + u0 2ξ0







λv2

Mx
, (16)
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2
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complex CG



Quark and Lepton Mixing Matrices

• CKM mixing matrix:

• MNS matrix:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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UMNS = V †
e,LUTBM =




1 −θc/3 ∗

θc/3 1 ∗
∗ ∗ 1









√
2/3 1/

√
3 0

−
√

1/6 1/
√

3 −1/
√

2
−

√
1/6 1/

√
3 1/

√
2





(1)

1

angle, the corresponding mixing angle in the charged lepton sector, θe
12, is much suppressed due to

the GJ relations,

θe
12 !

√
me

mµ
! 1

3

√
md

ms
∼ 1

3
θc . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 θ! ! tan2 θ!,TBM − eiβθc/3 , (19)

where the relative phase β is determined by the strengths and phases of the VEV’s, φ0 and ψ′
0.

With θc ! 0.22 and (φ0ψ′
0) being real, the factor eiβ turns out to be very close to 1. This

deviation thus naturally accounts for the difference between the prediction of the TBM matrix,

which gives tan2 θ!,TBM = 1/2, and the experimental best fit value, tan2 θ!,exp = 0.429. The

off diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

θ13 ! θc/3
√

2 ∼ 0.05. We note that a more precise measurement of tan θ! will pin down the

phase of φ0ψ′
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = ε2u : εu : 1, md : ms : mb = ε2d : εd : 1 , (20)

where εu ! (1/200) = 0.005 and εd ! (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvdφ0ζ0
=





0 (1 + i)b 0

−(1− i)b c 0

b b 1




,

Me

ybvdφ0ζ0
=





0 −(1− i)b b

(1 + i)b −3c b

0 0 1




,

(21)

and with the choice of b ≡ φ0ψ′
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : mτ = 0.000870 : 0.143 : 1.00 . (23)
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Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo

7
angle, the corresponding mixing angle in the charged lepton sector, θe

12, is much suppressed due to

the GJ relations,

θe
12 !

√
me

mµ
! 1

3

√
md

ms
∼ 1

3
θc . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 θ! ! tan2 θ!,TBM − eiβθc/3 , (19)

where the relative phase β is determined by the strengths and phases of the VEV’s, φ0 and ψ′
0.

With θc ! 0.22 and (φ0ψ′
0) being real, the factor eiβ turns out to be very close to 1. This

deviation thus naturally accounts for the difference between the prediction of the TBM matrix,

which gives tan2 θ!,TBM = 1/2, and the experimental best fit value, tan2 θ!,exp = 0.429. The

off diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

θ13 ! θc/3
√

2 ∼ 0.05. We note that a more precise measurement of tan θ! will pin down the

phase of φ0ψ′
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = ε2u : εu : 1, md : ms : mb = ε2d : εd : 1 , (20)

where εu ! (1/200) = 0.005 and εd ! (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvdφ0ζ0
=





0 (1 + i)b 0

−(1− i)b c 0

b b 1




,

Me

ybvdφ0ζ0
=





0 −(1− i)b b

(1 + i)b −3c b

0 0 1




,

(21)

and with the choice of b ≡ φ0ψ′
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : mτ = 0.000870 : 0.143 : 1.00 . (23)
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UPMNS =




1 0 0
0 c23 s23

0 −s23 c23








c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13








c12 s12 0
−s12 c12 0

0 0 1








1 0 0
0 eiα21/2 0
0 0 eiα31/2



 (1)

∆m2
31 = (2.40+0.24

−0.22)× 10−3 eV2, ∆m2
21 = (7.65+0.46

−0.40)× 10−5 eV2

sin2 θ23 = 0.5+0.14
−0.12, sin2 θ12 = 0.304+0.044

−0.032, sin2 θ13 = 0.01(≤ 0.040)

sin2 θ13 = 0.01+0.016
−0.011 (1σ)

S =
1
3




−1 2ω 2ω2

2ω2 −1 2ω
2ω 2ω2 −1





Z3 : GT

Z4 : GS , GTST 2

tan2 θ" $ tan2 θ",TBM −
1
2
θc cos δ

1

11
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These predictions are consistent with the observed values given in Eq. 20 and are in good agreement

with the GJ relations. The overall scale factor is ybφ0ζ0 ! mb/mt ! (0.011) at the GUT scale,

assuming the top Yukawa coupling is 1. For the up type quarks, the mass matrix can be written

as,

Mu =





ia 1−i
2 a 0

1−i
2 a a + h k

0 k 1




ytvu , (24)

and with the choice of k ≡ y′ψ0ζ0 = −0.032, h ≡ ψ2
0 = 0.0053 and g ≡ φ′30 = −2.25 × 10−5, the

ratio among the three up type quarks is given by,

mu : mc : mt = 0.0000252 : 0.005 : 1.00 , (25)

which is consistent with the observed values shown in Eq. 20. The absolute values of the CKM

matrix elements are given by,

|VCKM| =





0.976 0.217 0.00778

0.216 0.975 0.040

0.015 0.0378 0.999




. (26)

Except for the element Vub, which is slightly higher than the current experimental upper bound

of ∼ 0.005, all other elements are in good agreement with current data. This discrepancy can be

alleviated by allowing additional operators to be present in the model. It can also be improved by

having complex parameters, with which realistic CP violation measures in the quark sector could

also arise. We leave these possibilities for further investigation. The diagonalization matrix for the

charged leptons is,

Ve,L =





−0.996 + 0.052i −0.0516 + 0.0581i (6.35− 6.36i)× 10−5

0.0578 + 0.0520i −0.995 + 0.0581i 0.00108− 0.0000636i

7.24× 10−6 0.00109 0.999




. (27)

This leads to small deviation to the tri-bimaximal mixing pattern as discussed above, leading to

the following leptonic mixing matrix,

|UMNS| = |V †
e,LUTBM| =





0.838 0.545 0.0550

0.364 0.608 0.706

0.409 0.578 0.706




, (28)

which gives sin2 θatm = 1, tan2 θ# = 0.424 and |Ue3| = 0.055. Note that the total number of

parameters in our model is seven in the charged fermion sectors and two in the neutrino sector.
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7  parameters in 
charged fermion 

sector
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−s13eiδ 0 c13


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
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c12 s12 0
−s12 c12 0

0 0 1








1 0 0
0 eiα21/2 0
0 0 eiα31/2



 (1)

∆m2
31 = (2.40+0.24

−0.22)× 10−3 eV2, ∆m2
21 = (7.65+0.46

−0.40)× 10−5 eV2

sin2 θ23 = 0.5+0.14
−0.12, sin2 θ12 = 0.304+0.044

−0.032, sin2 θ13 = 0.01(≤ 0.040)

sin2 θ13 = 0.01+0.016
−0.011 (1σ)

S =
1
3




−1 2ω 2ω2

2ω2 −1 2ω
2ω 2ω2 −1





Z3 : GT

Z4 : GS , GTST 2

tan2 θ" $ tan2 θ",TBM −
1
2
θc cos δ

Mu =




ig 1−i

2 g 0
1−i
2 g g + (1− i

2 )h k
0 k 1



 ytvu

h ≡ φ2
0 = 0.0053

1

3

which is parametrized by two parameters, giving the
three absolute neutrino masses [9] (see below). As these
interactions involve only the triplet representations of T ′,
the relevant product rule is 3 ⊗ 3. Consequently, all CG
coefficients are real, leading to a real neutrino Majo-
rana mass matrix. The neutrino mass matrix given in
Eq. 16 has the special property that it is form diagonal-
izable [14], i.e. independent of the values of ξ0 and u0, it
is diagonalized by the tri-bimaximal mixing matrix,

UT
TBM

MνUTBM = diag(u0 + 3ξ0, u0,−u0 + 3ξ0)
v2

u

MX
,

≡ diag(m1, m2, m3) . (17)

While the neutrino mass matrix is real, the complex
charged lepton mass matrix Me, which is diagonalized
by, V †

e,RMeVe,L = diag(me, mµ, mτ ), leads to a complex

VPMNS = V †
e,LUTBM (see below).

CPT Invariance and CP Violation.—Even though the
complexity of the Lagrangian arises in our model through
the complex CG coefficients, the hermiticity of the La-
grangian, which is required in order to have CPT invari-
ance, remains satisfied. This is easily seen using the com-
ponent form given in Eq. 11. Take the term URMuQL

for example. Its corresponding hermitian conjugate is

(URMuQL)† = (U †
Rγ0MuQL)† = QLM †

uUR . (18)

The hermiticity of the Lagrangian allows us to write, in
general,

L(#x, t) = αO(#x, t) + α∗
O

†(#x, t) , (19)

where O(#x, t) is some operator and α is some c-number.
Recall that, the charge conjugation C changes a left-
hande particle into a left-hande anti-particle, while the
parity P turns a left-handed particle into a right-handed
particle, and vice versa. Thus the CP transformation
converts a left-handed particle into a right-handed anti-
particle. Effectively,

O(#x, t)
CP−→ O

†(−#x, t) , α
CP−→ α , (20)

The time reversal operator is antiunitary. It reverses the
momentum of a particle and flips its spin. Effectively,

O(#x, t)
T−→ O(#x,−t) , α

T−→ α∗ , (21)

In the weak eigenstates, the interactions Lcc in Eq. 15 are
invariant under CP and T, as all coupling constants are
real. On the other hand, the Yukawa interactions violate
both CP and T. Using the up-quark sector again as an
example, for each conjugate pair specified by indices i
and j,

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

CP−→ QL,j(Mu)ijUR,i + UR,i(Mu)∗ijQL,j , (22)

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

T−→ UR,i(Mu)∗ijQL,j + QL,j(Mu)ijUR,i , (23)

The complexity of the mass matrix, giving rise to CP and
T violations, ensues from the complex CG coefficients in
T ′. Here we have suppressed the space-time coordinates
the inversions of which under the transformations are as-
sumed implicitly. Due to its hermiticity, the Lagrangian
is CPT invariant,

URMuQL +QLM †
uUR

CPT−→ QLM †
uUR +URMuQL , (24)

Alternatively, in the mass eigenstates, the Yukawa inter-
actions are invariant under CP and T, while the charged
current interactions violate CP and T individually and
are invariant under CPT. Note that CP violation is in-
herent in the Lagrangian Eq.3, which is T ′ and SU(5)
invariant.

Numerical Predictions.—The predicted charged
fermion mass matrices in our model are parametrized in
terms of 7 parameters,

Mu

ytvu
=







ig 1−i
2

g 0
1−i
2

g g + (1 − i
2
)h k

0 k 1






, (25)

Md, MT
e

ybvdφ0ζ0
=







0 (1 + i)b 0

−(1 − i)b (1,−3)c 0

b b 1






, (26)

With b ≡ φ0ψ′
0/ζ0 = 0.0029, c ≡ ψ0N0/ζ0 = −0.0169,

k ≡ y′ψ0ζ0 = −0.029, h ≡ φ2
0 = 0.008 and g ≡ φ′3

0 =
−9 × 10−6, the following mass ratios are obtained, md :
ms : mb & θ4.7

c : θ2.7

c : 1, mu : mc : mt & θ8

c : θ3.2

c : 1,
with θc &

√

md/ms & 0.225. (These ratios in terms
of θc coincide with those give in [15].) We have also
taken yt = 1 and ybφ0ζ0 & mb/mt & 0.011. As a result
of the GJ relations, realistic charged lepton masses are
obtained. Making use of these parameters, the complex
CKM matrix is,







0.975e−i26.8o

0.225ei21.1o

0.00293ei164o

0.224ei124o

0.974e−i8.19o

0.032ei180o

0.00557ei103o

0.0317e−i7.33o

0.999






. (27)

The values for |VCKM | elements are in agreement with
current experimental values. The predictions of our
model for the angles in the unitarity triangle and the
Jarlskog invariant in the quark sector are,

β ≡ arg

(

−VcdV ∗
cb

VtdV ∗
tb

)

= 21.3o, sin 2β = 0.676 , (28)

α ≡ arg

(

−VtdV ∗
tb

VudV ∗
ub

)

= 114o , (29)

γ ≡ arg

(

−VudV ∗
ub

VcdV ∗
cb

)

= δq = 44.9o , (30)

J ≡ Im(VudVcbV
∗
ubV

∗
cs) = 1.45 × 10−5 , (31)

where δq is the CP phase in the standard parametriza-
tion. In terms of the Wolfenstein parameters, we have
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The complexity of the mass matrix, giving rise to CP and
T violations, ensues from the complex CG coefficients in
T ′. Here we have suppressed the space-time coordinates
the inversions of which under the transformations are as-
sumed implicitly. Due to its hermiticity, the Lagrangian
is CPT invariant,

URMuQL +QLM †
uUR

CPT−→ QLM †
uUR +URMuQL , (24)

Alternatively, in the mass eigenstates, the Yukawa inter-
actions are invariant under CP and T, while the charged
current interactions violate CP and T individually and
are invariant under CPT. Note that CP violation is in-
herent in the Lagrangian Eq.3, which is T ′ and SU(5)
invariant.

Numerical Predictions.—The predicted charged
fermion mass matrices in our model are parametrized in
terms of 7 parameters,
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With b ≡ φ0ψ′
0/ζ0 = 0.0029, c ≡ ψ0N0/ζ0 = −0.0169,

k ≡ y′ψ0ζ0 = −0.029, h ≡ φ2
0 = 0.008 and g ≡ φ′3

0 =
−9 × 10−6, the following mass ratios are obtained, md :
ms : mb & θ4.7

c : θ2.7

c : 1, mu : mc : mt & θ8

c : θ3.2

c : 1,
with θc &
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md/ms & 0.225. (These ratios in terms
of θc coincide with those give in [15].) We have also
taken yt = 1 and ybφ0ζ0 & mb/mt & 0.011. As a result
of the GJ relations, realistic charged lepton masses are
obtained. Making use of these parameters, the complex
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The values for |VCKM | elements are in agreement with
current experimental values. The predictions of our
model for the angles in the unitarity triangle and the
Jarlskog invariant in the quark sector are,
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where δq is the CP phase in the standard parametriza-
tion. In terms of the Wolfenstein parameters, we have
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which is parametrized by two parameters, giving the
three absolute neutrino masses [9] (see below). As these
interactions involve only the triplet representations of T ′,
the relevant product rule is 3 ⊗ 3. Consequently, all CG
coefficients are real, leading to a real neutrino Majo-
rana mass matrix. The neutrino mass matrix given in
Eq. 16 has the special property that it is form diagonal-
izable [14], i.e. independent of the values of ξ0 and u0, it
is diagonalized by the tri-bimaximal mixing matrix,
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While the neutrino mass matrix is real, the complex
charged lepton mass matrix Me, which is diagonalized
by, V †

e,RMeVe,L = diag(me, mµ, mτ ), leads to a complex

VPMNS = V †
e,LUTBM (see below).

CPT Invariance and CP Violation.—Even though the
complexity of the Lagrangian arises in our model through
the complex CG coefficients, the hermiticity of the La-
grangian, which is required in order to have CPT invari-
ance, remains satisfied. This is easily seen using the com-
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where O(#x, t) is some operator and α is some c-number.
Recall that, the charge conjugation C changes a left-
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O(#x, t)
CP−→ O

†(−#x, t) , α
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The time reversal operator is antiunitary. It reverses the
momentum of a particle and flips its spin. Effectively,
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T−→ α∗ , (21)

In the weak eigenstates, the interactions Lcc in Eq. 15 are
invariant under CP and T, as all coupling constants are
real. On the other hand, the Yukawa interactions violate
both CP and T. Using the up-quark sector again as an
example, for each conjugate pair specified by indices i
and j,

UR,i(Mu)ijQL,j + QL,j(M
†
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CP−→ QL,j(Mu)ijUR,i + UR,i(Mu)∗ijQL,j , (22)
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T−→ UR,i(Mu)∗ijQL,j + QL,j(Mu)ijUR,i , (23)

The complexity of the mass matrix, giving rise to CP and
T violations, ensues from the complex CG coefficients in
T ′. Here we have suppressed the space-time coordinates
the inversions of which under the transformations are as-
sumed implicitly. Due to its hermiticity, the Lagrangian
is CPT invariant,

URMuQL +QLM †
uUR

CPT−→ QLM †
uUR +URMuQL , (24)

Alternatively, in the mass eigenstates, the Yukawa inter-
actions are invariant under CP and T, while the charged
current interactions violate CP and T individually and
are invariant under CPT. Note that CP violation is in-
herent in the Lagrangian Eq.3, which is T ′ and SU(5)
invariant.

Numerical Predictions.—The predicted charged
fermion mass matrices in our model are parametrized in
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0/ζ0 = 0.0029, c ≡ ψ0N0/ζ0 = −0.0169,

k ≡ y′ψ0ζ0 = −0.029, h ≡ φ2
0 = 0.008 and g ≡ φ′3

0 =
−9 × 10−6, the following mass ratios are obtained, md :
ms : mb & θ4.7

c : θ2.7

c : 1, mu : mc : mt & θ8

c : θ3.2

c : 1,
with θc &
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md/ms & 0.225. (These ratios in terms
of θc coincide with those give in [15].) We have also
taken yt = 1 and ybφ0ζ0 & mb/mt & 0.011. As a result
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The values for |VCKM | elements are in agreement with
current experimental values. The predictions of our
model for the angles in the unitarity triangle and the
Jarlskog invariant in the quark sector are,
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three absolute neutrino masses [9] (see below). As these
interactions involve only the triplet representations of T ′,
the relevant product rule is 3 ⊗ 3. Consequently, all CG
coefficients are real, leading to a real neutrino Majo-
rana mass matrix. The neutrino mass matrix given in
Eq. 16 has the special property that it is form diagonal-
izable [14], i.e. independent of the values of ξ0 and u0, it
is diagonalized by the tri-bimaximal mixing matrix,

UT
TBM

MνUTBM = diag(u0 + 3ξ0, u0,−u0 + 3ξ0)
v2

u

MX
,

≡ diag(m1, m2, m3) . (17)

While the neutrino mass matrix is real, the complex
charged lepton mass matrix Me, which is diagonalized
by, V †

e,RMeVe,L = diag(me, mµ, mτ ), leads to a complex

VPMNS = V †
e,LUTBM (see below).

CPT Invariance and CP Violation.—Even though the
complexity of the Lagrangian arises in our model through
the complex CG coefficients, the hermiticity of the La-
grangian, which is required in order to have CPT invari-
ance, remains satisfied. This is easily seen using the com-
ponent form given in Eq. 11. Take the term URMuQL

for example. Its corresponding hermitian conjugate is

(URMuQL)† = (U †
Rγ0MuQL)† = QLM †

uUR . (18)

The hermiticity of the Lagrangian allows us to write, in
general,

L(#x, t) = αO(#x, t) + α∗
O

†(#x, t) , (19)

where O(#x, t) is some operator and α is some c-number.
Recall that, the charge conjugation C changes a left-
hande particle into a left-hande anti-particle, while the
parity P turns a left-handed particle into a right-handed
particle, and vice versa. Thus the CP transformation
converts a left-handed particle into a right-handed anti-
particle. Effectively,

O(#x, t)
CP−→ O

†(−#x, t) , α
CP−→ α , (20)

The time reversal operator is antiunitary. It reverses the
momentum of a particle and flips its spin. Effectively,

O(#x, t)
T−→ O(#x,−t) , α

T−→ α∗ , (21)

In the weak eigenstates, the interactions Lcc in Eq. 15 are
invariant under CP and T, as all coupling constants are
real. On the other hand, the Yukawa interactions violate
both CP and T. Using the up-quark sector again as an
example, for each conjugate pair specified by indices i
and j,

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

CP−→ QL,j(Mu)ijUR,i + UR,i(Mu)∗ijQL,j , (22)

UR,i(Mu)ijQL,j + QL,j(M
†
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T−→ UR,i(Mu)∗ijQL,j + QL,j(Mu)ijUR,i , (23)

The complexity of the mass matrix, giving rise to CP and
T violations, ensues from the complex CG coefficients in
T ′. Here we have suppressed the space-time coordinates
the inversions of which under the transformations are as-
sumed implicitly. Due to its hermiticity, the Lagrangian
is CPT invariant,

URMuQL +QLM †
uUR

CPT−→ QLM †
uUR +URMuQL , (24)

Alternatively, in the mass eigenstates, the Yukawa inter-
actions are invariant under CP and T, while the charged
current interactions violate CP and T individually and
are invariant under CPT. Note that CP violation is in-
herent in the Lagrangian Eq.3, which is T ′ and SU(5)
invariant.

Numerical Predictions.—The predicted charged
fermion mass matrices in our model are parametrized in
terms of 7 parameters,
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With b ≡ φ0ψ′
0/ζ0 = 0.0029, c ≡ ψ0N0/ζ0 = −0.0169,

k ≡ y′ψ0ζ0 = −0.029, h ≡ φ2
0 = 0.008 and g ≡ φ′3

0 =
−9 × 10−6, the following mass ratios are obtained, md :
ms : mb & θ4.7

c : θ2.7

c : 1, mu : mc : mt & θ8

c : θ3.2

c : 1,
with θc &
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md/ms & 0.225. (These ratios in terms
of θc coincide with those give in [15].) We have also
taken yt = 1 and ybφ0ζ0 & mb/mt & 0.011. As a result
of the GJ relations, realistic charged lepton masses are
obtained. Making use of these parameters, the complex
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The values for |VCKM | elements are in agreement with
current experimental values. The predictions of our
model for the angles in the unitarity triangle and the
Jarlskog invariant in the quark sector are,
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where δq is the CP phase in the standard parametriza-
tion. In terms of the Wolfenstein parameters, we have
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which is parametrized by two parameters, giving the
three absolute neutrino masses [9] (see below). As these
interactions involve only the triplet representations of T ′,
the relevant product rule is 3 ⊗ 3. Consequently, all CG
coefficients are real, leading to a real neutrino Majo-
rana mass matrix. The neutrino mass matrix given in
Eq. 16 has the special property that it is form diagonal-
izable [14], i.e. independent of the values of ξ0 and u0, it
is diagonalized by the tri-bimaximal mixing matrix,

UT
TBM

MνUTBM = diag(u0 + 3ξ0, u0,−u0 + 3ξ0)
v2

u

MX
,

≡ diag(m1, m2, m3) . (17)

While the neutrino mass matrix is real, the complex
charged lepton mass matrix Me, which is diagonalized
by, V †

e,RMeVe,L = diag(me, mµ, mτ ), leads to a complex

VPMNS = V †
e,LUTBM (see below).

CPT Invariance and CP Violation.—Even though the
complexity of the Lagrangian arises in our model through
the complex CG coefficients, the hermiticity of the La-
grangian, which is required in order to have CPT invari-
ance, remains satisfied. This is easily seen using the com-
ponent form given in Eq. 11. Take the term URMuQL

for example. Its corresponding hermitian conjugate is

(URMuQL)† = (U †
Rγ0MuQL)† = QLM †

uUR . (18)

The hermiticity of the Lagrangian allows us to write, in
general,

L(#x, t) = αO(#x, t) + α∗
O

†(#x, t) , (19)

where O(#x, t) is some operator and α is some c-number.
Recall that, the charge conjugation C changes a left-
hande particle into a left-hande anti-particle, while the
parity P turns a left-handed particle into a right-handed
particle, and vice versa. Thus the CP transformation
converts a left-handed particle into a right-handed anti-
particle. Effectively,

O(#x, t)
CP−→ O

†(−#x, t) , α
CP−→ α , (20)

The time reversal operator is antiunitary. It reverses the
momentum of a particle and flips its spin. Effectively,

O(#x, t)
T−→ O(#x,−t) , α

T−→ α∗ , (21)

In the weak eigenstates, the interactions Lcc in Eq. 15 are
invariant under CP and T, as all coupling constants are
real. On the other hand, the Yukawa interactions violate
both CP and T. Using the up-quark sector again as an
example, for each conjugate pair specified by indices i
and j,

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

CP−→ QL,j(Mu)ijUR,i + UR,i(Mu)∗ijQL,j , (22)
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T−→ UR,i(Mu)∗ijQL,j + QL,j(Mu)ijUR,i , (23)

The complexity of the mass matrix, giving rise to CP and
T violations, ensues from the complex CG coefficients in
T ′. Here we have suppressed the space-time coordinates
the inversions of which under the transformations are as-
sumed implicitly. Due to its hermiticity, the Lagrangian
is CPT invariant,

URMuQL +QLM †
uUR

CPT−→ QLM †
uUR +URMuQL , (24)

Alternatively, in the mass eigenstates, the Yukawa inter-
actions are invariant under CP and T, while the charged
current interactions violate CP and T individually and
are invariant under CPT. Note that CP violation is in-
herent in the Lagrangian Eq.3, which is T ′ and SU(5)
invariant.

Numerical Predictions.—The predicted charged
fermion mass matrices in our model are parametrized in
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k ≡ y′ψ0ζ0 = −0.029, h ≡ φ2
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0 =
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c : 1, mu : mc : mt & θ8
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c : 1,
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md/ms & 0.225. (These ratios in terms
of θc coincide with those give in [15].) We have also
taken yt = 1 and ybφ0ζ0 & mb/mt & 0.011. As a result
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The values for |VCKM | elements are in agreement with
current experimental values. The predictions of our
model for the angles in the unitarity triangle and the
Jarlskog invariant in the quark sector are,
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While the neutrino mass matrix is real, the complex
charged lepton mass matrix Me, which is diagonalized
by, V †

e,RMeVe,L = diag(me, mµ, mτ ), leads to a complex

VPMNS = V †
e,LUTBM (see below).
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complexity of the Lagrangian arises in our model through
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grangian, which is required in order to have CPT invari-
ance, remains satisfied. This is easily seen using the com-
ponent form given in Eq. 11. Take the term URMuQL

for example. Its corresponding hermitian conjugate is
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general,
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where O(#x, t) is some operator and α is some c-number.
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In the weak eigenstates, the interactions Lcc in Eq. 15 are
invariant under CP and T, as all coupling constants are
real. On the other hand, the Yukawa interactions violate
both CP and T. Using the up-quark sector again as an
example, for each conjugate pair specified by indices i
and j,
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The complexity of the mass matrix, giving rise to CP and
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the inversions of which under the transformations are as-
sumed implicitly. Due to its hermiticity, the Lagrangian
is CPT invariant,
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CPT−→ QLM †
uUR +URMuQL , (24)

Alternatively, in the mass eigenstates, the Yukawa inter-
actions are invariant under CP and T, while the charged
current interactions violate CP and T individually and
are invariant under CPT. Note that CP violation is in-
herent in the Lagrangian Eq.3, which is T ′ and SU(5)
invariant.
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0 =
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up-quark sector again as an example, for each conjugate pair specified by indices i and j,
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†
u)jiUR,i
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UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

T−→ UR,i(Mu)∗ijQL,j + QL,j(Mu)ijUR,i , (23)

The complexity of the mass matrix, giving rise to CP and T violations, ensues from the complex

CG coefficients in T ′. Here we have suppressed the space-time coordinates the inversions of which

under the transformations are assumed implicitly. Due to its hermiticity, the Lagrangian is CPT

invariant,

URMuQL + QLM †
uUR

CPT−→ QLM †
uUR + URMuQL , (24)

Alternatively, in the mass eigenstates, the Yukawa interactions are invariant under CP and T, while

the charged current interactions violate CP and T individually and are invariant under CPT. Note

that CP violation is inherent in the Lagrangian Eq.3, which is T ′ and SU(5) invariant.

Numerical Predictions.—The predicted charged fermion mass matrices in our model are

parametrized in terms of 7 parameters,

Mu

ytvu
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2 g 0
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2 g g + (1− i
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
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e
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
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2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

1

The values for |VCKM | elements are in agreement with current experimental values. The predictions

of our model for the angles in the unitarity triangle and the Jarlskog invariant in the quark sector

are,

β ≡ arg
(
−VcdV ∗

cb

VtdV ∗
tb

)
= 21.3o, sin 2β = 0.676 , (28)

α ≡ arg
(
−VtdV ∗

tb

VudV ∗
ub

)
= 114o , (29)

γ ≡ arg
(
−VudV ∗

ub

VcdV ∗
cb

)
= δq = 44.9o , (30)

J ≡ Im(VudVcbV
∗
ubV

∗
cs) = 1.45× 10−5 , (31)

where δq is the CP phase in the standard parametrization. In terms of the Wolfenstein parameters,

we have λ = 0.225, A = 0.637, ρ = 0.280 and η = 0.280. These values are in agreement with

current experimental results [16].

As a result of the GJ relations, our model predicts the sum rule [9, 17] between the solar neutrino

mixing angle and the Cabibbo angle in the quark sector,

tan2 θ# $ tan2 θ#,TBM −
1
2
θc cos δ! . (32)

In addition, our model predicts θ13 ∼ θc/3
√

2. Numerically, the diagonalization matrix for the

charged leptons is,




0.997ei177o 0.08ei132o 1.2× 10−5e−i45o

0.08ei41.9o 0.997ei177o 1.40× 10−4e−i3.47o

10−6 1.4× 10−4 1




. (33)

This leads to small deviation from the TBM pattern, giving

VPMNS =





0.837e−i179o 0.544e−i173o 0.0566ei138o

0.364e−i3.86o 0.609e−i173o 0.705ei3.45o

0.408ei180o 0.577 0.707




, (34)

which gives sin2 θatm = 1, tan2 θ# = 0.422 and |Ue3| = 0.0566. The two VEV’s, u0 = −0.0593

and ξ0 = 0.0369, give ∆m2
atm = 2.4 × 10−3 eV2 and ∆m2

# = 8.0 × 10−5 eV2. As the three

masses are given in terms of two VEV’s, there exists a mass sum rule, m1 −m3 = 2m2, leading

to normal mass hierarchy, ∆m2
atm > 0 [9]. The leptonic Jarlskog is predicted to be J! = −0.0094,

and equivalently, this gives a Dirac CP phase, δ! = −46.9o in the standard parametrization. With

such δ!, the correction from the charged lepton sector can account for the difference between
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λ = 0.225, A = 0.637, ρ = 0.280 and η = 0.280. These
values are in agreement with current experimental re-
sults [16].

As a result of the GJ relations, our model predicts the
sum rule [9, 17] between the solar neutrino mixing angle
and the Cabibbo angle in the quark sector,

tan2 θ! ! tan2 θ!,TBM −
1

2
θc cos δ! . (32)

In addition, our model predicts θ13 ∼ θc/3
√

2. Numeri-
cally, the diagonalization matrix for the charged leptons
is,







0.997ei177o

0.08ei132o

1.2 × 10−5e−i45o

0.08ei41.9o

0.997ei177o

1.40 × 10−4e−i3.47o

10−6 1.4 × 10−4 1






. (33)

This leads to small deviation from the TBM pattern, giv-
ing

VPMNS =







0.837e−i179o

0.544e−i173o

0.0566ei138o

0.364e−i3.86o

0.609e−i173o

0.705ei3.45o

0.408ei180o

0.577 0.707






,

(34)
which gives sin2 θatm = 1, tan2 θ! = 0.422 and |Ue3| =
0.0566. The two VEV’s, u0 = −0.0593 and ξ0 = 0.0369,
give ∆m2

atm = 2.4 × 10−3 eV2 and ∆m2
! = 8.0 ×

10−5 eV2. As the three masses are given in terms of
two VEV’s, there exists a mass sum rule, m1 − m3 =
2m2, leading to normal mass hierarchy, ∆m2

atm > 0 [9].
The leptonic Jarlskog is predicted to be J! = −0.0094,
and equivalently, this gives a Dirac CP phase, δ! =
−46.9o in the standard parametrization. With such δ!,
the correction from the charged lepton sector can ac-
count for the difference between the TBM prediction and
the current best fit value for θ!. Our model predicts
(m1, m2, m3) = (0.0156,−0.0179, 0.0514) eV, with Ma-
jorana phases α21 = π and α31 = 0.

Our model has nine input parameters, predicting a to-
tal of twenty-two physical quantities: 12 masses, 6 mix-
ing angles, 2 Dirac CP violating phases and 2 Majorana
phases.

Conclusion.—We propose the complex group theoreti-
cal CG coefficients as a novel origin of CP violation. This
is manifest in our model based on SU(5) combined with
the double tetrahedral group, T ′. Due to the presence
of the doublet representations in T ′, there exist complex
CG coefficients, leading to explicit CP violation in the
model, while having real Yukawa couplings and scalar
VEVs. The predicted CP violation measures in the quark
sector are consistent with the current experimental data.
The leptonic Dirac CP violating phase is predicted to
be δ! ∼ −47o, which may be relevant for generating the
cosmological matter asymmetry.
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The values for |VCKM | elements are in agreement with current experimental values. The predictions

of our model for the angles in the unitarity triangle and the Jarlskog invariant in the quark sector

are,

β ≡ arg
(
−VcdV ∗

cb

VtdV ∗
tb

)
= 21.3o, sin 2β = 0.676 , (28)

α ≡ arg
(
−VtdV ∗

tb

VudV ∗
ub

)
= 114o , (29)

γ ≡ arg
(
−VudV ∗

ub

VcdV ∗
cb

)
= δq = 44.9o , (30)

J ≡ Im(VudVcbV
∗
ubV

∗
cs) = 1.45× 10−5 , (31)

where δq is the CP phase in the standard parametrization. In terms of the Wolfenstein parameters,

we have λ = 0.225, A = 0.637, ρ = 0.280 and η = 0.280. These values are in agreement with

current experimental results [16].

As a result of the GJ relations, our model predicts the sum rule [9, 17] between the solar neutrino

mixing angle and the Cabibbo angle in the quark sector,

tan2 θ# $ tan2 θ#,TBM −
1
2
θc cos δ! . (32)

In addition, our model predicts θ13 ∼ θc/3
√

2. Numerically, the diagonalization matrix for the

charged leptons is,




0.997ei177o 0.08ei132o 1.2× 10−5e−i45o

0.08ei41.9o 0.997ei177o 1.40× 10−4e−i3.47o

10−6 1.4× 10−4 1




. (33)

This leads to small deviation from the TBM pattern, giving

VPMNS =





0.837e−i179o 0.544e−i173o 0.0566ei138o

0.364e−i3.86o 0.609e−i173o 0.705ei3.45o

0.408ei180o 0.577 0.707




, (34)

which gives sin2 θatm = 1, tan2 θ# = 0.422 and |Ue3| = 0.0566. The two VEV’s, u0 = −0.0593

and ξ0 = 0.0369, give ∆m2
atm = 2.4 × 10−3 eV2 and ∆m2

# = 8.0 × 10−5 eV2. As the three

masses are given in terms of two VEV’s, there exists a mass sum rule, m1 −m3 = 2m2, leading

to normal mass hierarchy, ∆m2
atm > 0 [9]. The leptonic Jarlskog is predicted to be J! = −0.0094,

and equivalently, this gives a Dirac CP phase, δ! = −46.9o in the standard parametrization. With

such δ!, the correction from the charged lepton sector can account for the difference between
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values are in agreement with current experimental re-
sults [16].

As a result of the GJ relations, our model predicts the
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which gives sin2 θatm = 1, tan2 θ! = 0.422 and |Ue3| =
0.0566. The two VEV’s, u0 = −0.0593 and ξ0 = 0.0369,
give ∆m2

atm = 2.4 × 10−3 eV2 and ∆m2
! = 8.0 ×

10−5 eV2. As the three masses are given in terms of
two VEV’s, there exists a mass sum rule, m1 − m3 =
2m2, leading to normal mass hierarchy, ∆m2

atm > 0 [9].
The leptonic Jarlskog is predicted to be J! = −0.0094,
and equivalently, this gives a Dirac CP phase, δ! =
−46.9o in the standard parametrization. With such δ!,
the correction from the charged lepton sector can ac-
count for the difference between the TBM prediction and
the current best fit value for θ!. Our model predicts
(m1, m2, m3) = (0.0156,−0.0179, 0.0514) eV, with Ma-
jorana phases α21 = π and α31 = 0.

Our model has nine input parameters, predicting a to-
tal of twenty-two physical quantities: 12 masses, 6 mix-
ing angles, 2 Dirac CP violating phases and 2 Majorana
phases.

Conclusion.—We propose the complex group theoreti-
cal CG coefficients as a novel origin of CP violation. This
is manifest in our model based on SU(5) combined with
the double tetrahedral group, T ′. Due to the presence
of the doublet representations in T ′, there exist complex
CG coefficients, leading to explicit CP violation in the
model, while having real Yukawa couplings and scalar
VEVs. The predicted CP violation measures in the quark
sector are consistent with the current experimental data.
The leptonic Dirac CP violating phase is predicted to
be δ! ∼ −47o, which may be relevant for generating the
cosmological matter asymmetry.
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2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

T ′ → nothing:

T ′ → GS :

m1 = u0 + 3ξ0

m2 = u0

m3 = −u0 + 3ξ0

∆m2
atm ≡ |m3|2 − |m2|2 = −12u0ξ0

∆m2
# ≡ |m2|2 − |m1|2 = −9ξ2

0 − 6u0ξ0 (1)

VCKM = V †
u,LVd,L

VMNS = V †
e,LVν = I · UTBM = UTBM

u0 = −0.0593, ξ0 = 0.0369, MX = 1014 GeV
m1 = 0.0156 eV, m2 = 0.0179 eV, m3 = 0.0514 eV

1 predicting:3 masses, 
3 mixing angles, 3 CP Phases



Neutrino Mass Sum Rule

• sum rule among three neutrino masses:

• the mass eigenvalues: 

• leads to sum rule

z = x5 + ix6

z → z + 1, z → z + γ, γ = eiπ/3

z → −z

(z1, z2, z3, z4) = (1/2, (1 + γ)/2, γ/2, 0)

3⊗ 3 = 3⊕ 3⊕ 1⊕ 1′ ⊕ 1′′

HHLL

M

(
〈ξ〉
Λ

+
〈η〉
Λ

)




$1
$2
$3





L

∼ 3, eR ∼ 1, µR ∼ 1′′, τR ∼ 1′

ξ ∼ 3, η ∼ 1

($φ)1eR(1) + ($φ)1′µR(1′′) + ($φ)1′′τR(1′)

φ ∼ 3

m1 −m3 = 2m2

1

On mass constraint m1 −m3 = 2m2:

The VEV’s u0 and ξ0 are complex. Let’s define the relative phase between
them as θ and rewrite the three masses as

m1 = u0 + 3ξ0e
iθ (1)

m2 = u0 (2)

m3 = −u0 + 3ξ0e
iθ (3)

(note that I have absorbed the factor v2
u/Λ into u0 and ξ0). The masses are

thus determined by three real parameters, ξ0, u0 and θ. Then

|m1|2 = u2
0 + 9ξ2

0 − 6u0ξ0 cos θ (4)

|m2|2 = u2
0 (5)

|m3|2 = u2
0 + 9ξ2

0 + 6u0ξ0 cos θ (6)

The two mass squared differences are

∆m2
atm ≡ |m3|2 − |m1|2 = −12u0ξ0 cos θ (7)

∆m2
! ≡ |m2|2 − |m1|2 = −9ξ2

0 − 6u0ξ0 cos θ (8)

which leads to the sum rule

∆m2
! = −9ξ2

0 +
1

2
∆m2

atm (9)

From the fact that ∆m2
! > 0, it follows that ∆m2

atm has to be positive,
implying normal hierarchy (including near degenerate case with |m3| > |m1|)
in the atmospheric sector. It also gives the constraint

0 > cos θ > −3

2

ξ0

u0
(10)

(compare Altarelli statement in hep-ph/0512103 on p12.)
We can of course chose another set of three parameters, ∆m2

atm, r ≡
∆m2

!/∆m2
atm and θ. The absolute values of the VEV’s are then given by

ξ0 =
1

3

√

(
1

2
− r)∆m2

atm (11)

u0 = − 1

4 cos θ

√√√√∆m2
atm

(1
2 − r)

(12)

1

z = x5 + ix6

z → z + 1, z → z + γ, γ = eiπ/3

z → −z

(z1, z2, z3, z4) = (1/2, (1 + γ)/2, γ/2, 0)

3⊗ 3 = 3⊕ 3⊕ 1⊕ 1′ ⊕ 1′′

HHLL

M

(
〈ξ〉
Λ

+
〈η〉
Λ

)




$1
$2
$3





L

∼ 3, eR ∼ 1, µR ∼ 1′′, τR ∼ 1′

ξ ∼ 3, η ∼ 1

($φ)1eR(1) + ($φ)1′µR(1′′) + ($φ)1′′τR(1′)

φ ∼ 3

m1 −m3 = 2m2

∆m2
atm > 0

1

normal hierarchy 
predicted!!
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2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

T ′ → nothing:

T ′ → GS :

m1 = u0 + 3ξ0

m2 = u0

m3 = −u0 + 3ξ0

1

2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

T ′ → nothing:

T ′ → GS :

m1 = u0 + 3ξ0

m2 = u0

m3 = −u0 + 3ξ0

∆m2
atm ≡ |m3|2 − |m2|2 = −12u0ξ0

∆m2
# ≡ |m2|2 − |m1|2 = −9ξ2

0 − 6u0ξ0 (1)

1



Summary

• SU(5) x T′ symmetry: tri-bimaximal lepton mixing & realistic 
CKM matrix

• complex CG coefficients in T′: origin of CPV both in quark and 
lepton sectors

• Z12 x Z12′: only 9 parameters in Yukawa sector

★ dynamical origin of mass hierarchy (including mb vs mt)

★ forbid proton decay

• interesting sum rules:

angle, the corresponding mixing angle in the charged lepton sector, θe
12, is much suppressed due to

the GJ relations,

θe
12 !

√
me

mµ
! 1

3

√
md

ms
∼ 1

3
θc . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 θ! ! tan2 θ!,TBM − eiβθc/3 , (19)

where the relative phase β is determined by the strengths and phases of the VEV’s, φ0 and ψ′
0.

With θc ! 0.22 and (φ0ψ′
0) being real, the factor eiβ turns out to be very close to 1. This

deviation thus naturally accounts for the difference between the prediction of the TBM matrix,

which gives tan2 θ!,TBM = 1/2, and the experimental best fit value, tan2 θ!,exp = 0.429. The

off diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

θ13 ! θc/3
√

2 ∼ 0.05. We note that a more precise measurement of tan θ! will pin down the

phase of φ0ψ′
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = ε2u : εu : 1, md : ms : mb = ε2d : εd : 1 , (20)

where εu ! (1/200) = 0.005 and εd ! (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvdφ0ζ0
=





0 (1 + i)b 0

−(1− i)b c 0

b b 1




,

Me

ybvdφ0ζ0
=





0 −(1− i)b b

(1 + i)b −3c b

0 0 1




,

(21)

and with the choice of b ≡ φ0ψ′
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : mτ = 0.000870 : 0.143 : 1.00 . (23)

8

right amount to account for 
discrepancy 

between exp best fit value
and TBM prediction

UPMNS =




1 0 0
0 c23 s23

0 −s23 c23








c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13








c12 s12 0
−s12 c12 0

0 0 1








1 0 0
0 eiα21/2 0
0 0 eiα31/2



 (1)

∆m2
31 = (2.40+0.24

−0.22)× 10−3 eV2, ∆m2
21 = (7.65+0.46

−0.40)× 10−5 eV2

sin2 θ23 = 0.5+0.14
−0.12, sin2 θ12 = 0.304+0.044

−0.032, sin2 θ13 = 0.01(≤ 0.040)

sin2 θ13 = 0.01+0.016
−0.011 (1σ)

S =
1
3




−1 2ω 2ω2

2ω2 −1 2ω
2ω 2ω2 −1





Z3 : GT

Z4 : GS , GTST 2

tan2 θ" $ tan2 θ",TBM −
1
2
θc cos δ

1

leptonic Dirac CP phase:  δ = -46.9 degrees
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