Manchester, UK

A Study of Low p_T Z Events Using a Novel Technique Mika Vesterinen University of Manchester

• The Tevatron

MANCHESTER

- 2 TeV proton anti-proton collider
- 6.5 fb⁻¹ of delivered luminosity in Run II!
- The DØ Experiment
 - General purpose detector
 - At the high energy frontier!

Z Boson Production

- Tevatron is now a "Z factory"
 - ~I Z produced every I0 seconds!

- Lots of interesting measurements of Z production properties
 - inclusive cross sections, differential cross sections (transverse momentum (pT), rapidity, AFB....etc).
- The p_T distribution is very interesting
 - High (>30 GeV) pT tests perturbative QCD
 - Low p_T probes non-perturbative QCD

MANCHEST

Low pt Z's

- Fixed order pQCD fails at low Z pt.
 - large logs + non-perturbative (NP) contributions.
- Solution^[1]:
 - Resummation of large logs into a Sudakov form factor
 - Absorb NP part into a *universal* form factor.
 - Form factor needs to be measured from data e.g. BLNY^[2] form.
 - At the Tevatron, the g_2 parameter determines the p_T distribution.

$$\frac{d\sigma}{dydq_T^2} = \frac{\sigma_0}{S} \int \frac{d^2b}{(2\pi)^2} e^{-iq_T^2 \cdot \vec{b}} \tilde{W}^{\text{PERT}} e^{-S^{\text{NP}}b^2} + Y$$
$$S_{\text{BLNY}}^{\text{NP}}(b, Q^2) = -g_1 - g_2 \ln(\frac{Q^2}{Q_0}) - g_1 g_3 \ln(100x_A x_B)$$

[1] J. Collins, D. Soper, G. Sterman, Nucl. Phys. B259 199 (1985)
[2] F. Landry, R. Brock, P. Nadolsky, C. P. Yuan. Phys. Rev. D 67, 073016 (2003)

The University of Mancheste

Low pt Z's

[1] J. Collins, D. Soper, G. Sterman, Nucl. Phys. B259 199 (1985)
[2] F. Landry, R. Brock, P. Nadolsky, C. P. Yuan. Phys. Rev. D 67, 073016 (2003)

Measuring the form factor

- Experiment (Tevatron, LHC exps...) measures the p_T distribution corrected for detector effects (unfolding).
 - Combine with low Q^2 Drell-yan data and fit the NP form factor
 - Detector corrections can be very large, and come with large uncertainties!
 - Mainly lepton $p_T(E_T)$ resolution and efficiency dependence on the Z p_T .

Solution

Build a different observable that is sensitive to the Z p_T , but less affected by detector effects.

The Universit of Manchest(

The **a**_T Observable

Split the Z p_T into into a_T and a_L with respect to the event thrust axis.

Lepton p_T resolution

At low p_T , $\Delta \phi \sim \pi$, and a_T is much better measured!

Efficiency dependence

Probability for event to pass cuts on p_T and isolation of the leptons depends on a_L and p_T , but not on a_T .

Performance of a_T MC

- \mathbf{a}_{T} is far less sensitive to detector effects than \mathbf{a}_{L} (and $\mathbf{p}_{\mathsf{T}})^{[1]!}$
 - E.g. comparison of generated distribution with detector-level distribution with selection cuts.
 - Sensitivity to the physics (g₂ parameter) is not degraded by the resolution.

[1] M. Vesterinen, T. R. Wyatt, Nucl. Instr. Meth. in Phys. Res. A 602 (2009); arXiv:0807.4956v1

Measurement of g₂

- Our goal is the detector corrected $\mathbf{a}_{\mathbf{T}}$ distribution
- To start with: measure the value of **g**₂ without unfolding the data
 - Compare the a_T distribution in data with MC "g₂ templates"
 - Using a_T allows us to use both ee and $\mu\mu$ decay channels!

- Compare a_T distribution in data with MC "g₂ templates"
 - Find the best fit from the minimum X^2 .

Uncertainties

- Statistical: ~3% (per channel)
- Experimental (simulation)
 - Backgrounds: ~ 1%,
 - Lepton p_T scale: ~ 0.5%,
 - Angular efficiency correlations: ~1%,
 - Efficiency dependencies on p_T and η : ~ 0.5%.
 - Final state radiation: ~ 0.5%.
- Theoretical
 - PDFs: ~ 6-7% !!

DØ Collaboration, DØ Note 5755-CONF (2008), Presented at ICHEP08.

Conclusions

- The Z p_T is an important measurement at the Tevatron.
- Detector effects are large at low pt.
- Novel observable **a**_T is almost unaffected!
 - M.Vesterinen, T. R. Wyatt, Nucl. Instr. Meth. in Phys. Res. A 602 (2009); arXiv: 0807.4956v1
- Measurement of g2 parameter
 - $g_2 = 0.63 \pm 0.02^{exp} \pm 0.04^{PDF} \text{ GeV}^2$
 - Both **ee** and $\mu\mu$ channels!
 - Comparable precision to world average!
 - DØ Collaboration, DØ Note 5755-CONF (2008), Presented at ICHEP08.
- Detector corrected $\mathbf{a}_{\mathbf{T}}$ distributions soon.

Backup slides

Lepton p_T Resolution

- Compare the resolutions of a_T , a_L and p_T .
 - Event-by-event, look at the (fractional) difference between "generatorlevel" and "detector-level".
 - Plot the mean of this, vs. generator level Z pt.

Event-by-event, a_T is much more precisely determined than the Z p_T !

- Apply typical event selection cuts
 - Cut on detector-level lepton p_T, isolation, pseudo-rapidity.

 a_T is much less correlated with event selection efficiency than a_L .

ResBos

- All implemented in the event generator ResBos^[1]
 - "The Monte Carlo for Resummed Boson Production and Decay."
 - Matches resummation at low Z p_T to NLO pQCD at large Z p_T .
 - Key part of Tevatron W mass measurements.
- Compared with recent DØ data^[2]
 - Good agreement at low pt.

[1] C. Balazs and C. P. Yuan, Phys. Rev. D 56, 5558 (1997)
[2] DØ collaboration, V. M. Abazov et al, Phys. Rev. Lett.
100 102002 (2008)

ResBos

- All implemented in the event generator ResBos^[1]
 - "The Monte Carlo for Resummed Boson Production and Decay."
 - Matches resummation at low Z p_T to NLO pQCD at large Z p_T .
 - Key part of Tevatron W mass measurements.
- Compared with recent DØ data^[2]
 - Disagreement at high pt.

[1] C. Balazs and C. P. Yuan, Phys. Rev. D 56, 5558 (1997)
[2] DØ collaboration, V. M. Abazov et al, Phys. Rev. Lett.
100 102002 (2008)

ResBos

- All implemented in the event generator ResBos^[1]
 - "The Monte Carlo for Resummed Boson Production and Decay."
 - Matches resummation at low Z p_T to NLO pQCD at large Z p_T .
 - Key part of Tevatron W mass measurements.
- Compared with recent DØ data^[2]
 - Low p_T and large rapidity is very interesting but large uncertainties.

Better agreement without "small-x broadening"^[3]

[1] C. Balazs and C. P. Yuan, Phys. Rev. D 56, 5558 (1997)
[2] DØ collaboration, V. M. Abazov et al, Phys. Rev. Lett.
100 102002 (2008)
[3] P. Nadolsky, D.R. Stump, and C.P.Yuan, Phys. Rev. D 64, 114011 (2001).

• Small-x broadening was needed to describe DIS data^[1]

Small-x Broadening

- At the Tevatron: harder p_T for large rapdity (|y| > 2).
- At the LHC: harder inclusive $pT^{[2]}$.

[1] P. Nadolsky, D.R. Stump, and C.P.Yuan, Phys. Rev. D 64, 114011 (2001).
[2] S. Berge, P. Nadolsky, F. Olness, C. P.Yuan, Phys. Rev. D 72, 033015 (2005).

MANCHESTER

Sensitivity to the Physics

- Do a "toy" measurement of g₂ in MC
 - Make a set of MC templates corresponding to different g₂.
 - Call a smaller subset (~200k events) of MC with particular g₂, our "pseudo-data."
 - Fit g_2 using a minimum χ^2 .
 - And get the statistical uncertainty on g₂.
 - Repeat for different lepton p_T resolutions

	Рт	a⊤	a∟	d²σ/ da⊤da∟
δ(1/P _T) (1/GeV)	Ισ δg ₂ (%)			
0.000	١.4	2.2	2.4	I.4
0.001	1.8	2.2	3.6	١.6
0.003	3.1	2.3	8.9	2.1

PDF Uncertainty

- Purely theoretical
 - Change in the ResBos $d\sigma/dp_T$ at fixed g_2 .
 - Experimental acceptance uncertainty is negligible.
- Used the CTEQ 6.6 PDFs^[1] to generate our ResBos templates
 - 22 approximately orthogonal parameters.
 - Repeat the measurement 44 more times (22x ±90% CL).
 - Basically add in quadrature the shifts in fitted g₂.
 - Some parameters shift g₂ in the same direction for + and -.
 - If this is the case, take the larger and assign a one sided uncertainty.

[1] CTEQ Collaboration, P. Nadolsky et al., hep-ph/0802.0007v3 (2008).

The University of Manchester

PDF Uncertainty

- Purely theoretical
 - Change in the ResBos $d\sigma/dp_T$ at fixed g_2 .
 - Experimental acceptance uncertainty is negligible
- Used the CTEQ 6.6 PDFs to generate our ResBos templates

The University of Manchester MANCHESTER 1824

The "Z pT" distributions: aT,aL,pT

at vs bt

- Electron-like resolution: $\delta E_T \sim E^{1/2}$
- Muon-like resolution: $\delta(I/p_T) = const$
- a_T is better for e-like, b_T for μ -like, so we prefer to use b_T at DØ.

 $\hat{t} = \vec{p}_T^{(1)} - \vec{p}_T^{(2)}$ $\hat{b} = \vec{p}_T^{(1)} - \frac{p_T^{(1)}}{p_T^{(2)}} \vec{p}_T^{(2)}$

 b_T is better for e-like, a_T for μ -like, therfore a_T is more suited for DØ.

PT Resolution

- We originally set out to reduce our sensitivity to p_T resolution uncertainties
- Try a super-conservative variation of the resolution in MC!
 - With Z pT, g_2 shifts by ~ ± 25%
 - With a_T the shifts in g_2 are around ~ ± 0.3%!

