Matrix Element Analysis for Hadron Collider Data

Igor Volobouev Texas Tech University *i.volobouev@ttu.edu*

PHENO 09, May 11 2009

Matrix Element Analysis

• Build the probability to see an event in the detector:

$$P_{ev}(\mathbf{y}|\mathbf{a}) = \sum_{i} f_i P_i(\mathbf{y}|\mathbf{a})$$

• Probability for each channel:

y – observables, a – parameters (theory/exp), x – phase space variables

Advantages of the ME Method

- Maximization of the likelihood $L(\mathbf{a}) = \prod P_{ev}(\mathbf{y}|\mathbf{a})$ results in an efficient (in the statistical sense) estimate of \mathbf{a} .
- Neyman-Pearson lemma:

$$r_j(\mathbf{y}|\mathbf{a}) = \frac{P_j(\mathbf{y}|\mathbf{a})}{\sum_{i \neq j} f_i P_i(\mathbf{y}|\mathbf{a})}$$

is the optimal discriminant for channel *j*.

- Unified framework for most HEP analyses. Can be used to communicate event data and detector descriptions to theorists, and matrix elements to experimentalists.
- Theory assumptions are incorporated in the most informative manner.
- Natural way to use non-Gaussian transfer functions.

Problems with the ME Method

- The most general case is intractable: dimensionalities of y and x are too high. Must make dimensionality reduction assumptions.
- Tough even at the hard process level. Example: $p\bar{p} \rightarrow t\bar{t} \rightarrow W^+ b W^- \bar{b} \rightarrow \ell \nu + 4$ jets D(y) = 19, D(x) = 24. Complex integrand structure.
- Extremely CPU-intensive (~1 hour per event, at least 10⁵ events must be processed for simple analyses).
- No general-purpose software, little experience in the HEP community

ME Method: Recent History

- Practical use at the energy frontier demonstrated for the first time by the D0 Run I measurement of the top quark mass. Published in *Nature* in 2004, 8 years after the run ended.
- Has been applied in a few "high impact" data analyses at Tevatron: Higgs searches, top quark mass measurement, W helicity in top decays, electroweak production of the top quark
- Usually the best method (among several analyses working with the same amount of data), but applications remain rare

May 11, 2009

State of the Art

Example likelihood curve obtained using 19-dimensional QMC integration

- The ME method has never been applied in practice in full detail
- Typical simplifying assumptions: leading order ME, incoming partons have no transverse momentum, perfect resolution for some kinematic measurements, neglected efficiencies, ignored backgrounds, *etc*.
- The most advanced implementation at present time: <u>"MTM3" top quark mass</u> <u>measurement by CDF</u> (world's best single measurement with better than 1% precision): $M_t = 172.1 \pm 1.6 \text{ GeV/c}^2$

Analysis Features

CDF jet reconstruction efficiency, built from MC using a local logistic regression model

- Factorize detector response using "physics objects" (leptons, jets, *b* tags). Correct on top of this.
- Subsume "soft QCD" effects into the transfer functions
- Use nonparametric statistical techniques for modeling transfer functions and efficiencies (let the computer do its job)
- Efficient phase space sampling scheme is built "by hand"
- Quasi-Monte Carlo is used for integration

Quasi-Monte Carlo

- Not Monte Carlo at all: based on the concept of deterministic "low-discrepancy sequences"
- Discrepancy is a measure of uniformity of a set of points. Several types of discrepancies have been studied. The most widely used is the "star discrepancy" which is a multivariate generalization of the Kolmogorov-Smirnov distance w.r.t. the uniform distribution:

$$D^{*}(P) = \sup_{B \in J^{*}} \left| \frac{1}{N} \sum_{i=1}^{N} c_{B}(\vec{x}_{i}) - S(B) \right|$$

P is the point set

*J** is the family of all subintervals of the ddimensional unit cube of the form $\prod_{k=1}^{d} [0, u_k]$

 c_B is the characteristic function of subinterval *B* (1 if the point is in *B*, 0 otherwise) *S*(*B*) is the hypervolume of *B*

Matrix Element Analysis for Hadron Collider Data

Quasi-Monte Carlo Convergence

- Koksma-Hlawka inequality: quasi-MC integration converges at least as fast as O(log(N)^d/N) for "wellbehaved" functions. Compare with O(1/√N) convergence for standard MC.
- Note that this inequality provides a *deterministic upper bound* on the convergence rate. The *actual* convergence rate is usually better.
- QMC convergence for various types of integrands is still an active research area in applied mathematics
- Little studied in the HEP context (but see Kleiss and Lazopoulos, Comp. Phys. Commun., vol 175, pp 93-115, 2006).

ME Method: from Art to Technology

- For somebody new to the subject, the initial investment of effort is extremely high
- Proposed solution: build an experiment-independent, userfriendly framework for ME analyses and place it in the public domain
 - Best data analysis tool for the most interesting processes in the SM and beyond
 - Standardized interfaces will provide a bridge between HEP experimentalists and phenomenologists. We will be able to exchange detector models, matrix elements, and *data* in a meaningful way.
 - Assist with all the standard tasks: generation of the transfer functions, running integration code, obtaining results and uncertainties, etc
 - Base for the future phase space sampling research
- An enabling technology for the future of HEP
- Looking for collaborators!!!