Discovering the Higgs with Low Mass Muon Pairs

Mariangela Lisanti SLAC/Stanford

May 11, 2009

M. L. & Jay G. Wacker, arXiv: 0903.1377 Andy Haas w/DØ Collaboration, Note 5891

Status of Higgs Searches [as of March 2009] LEP Excluded by Excluded by Exclusion Tevatron **Indirect Searches** 95% 95% 90% 95% 100 200 120 140 60 180 Higgs Mass (GeV)

Mariangela Lisanti

LEP Direct Bounds

Mass limit of 114 GeV pertains specifically to Standard Model decay modes

Mariangela Lisanti

LEP Direct Bounds

Mass limit of 114 GeV pertains specifically to Standard Model decay modes

LEP Direct Bounds

Mass limit of 114 GeV pertains specifically to Standard Model decay modes

Mariangela Lisanti

Cascading Higgs

Let Higgs decay dominantly to two new scalars

 $h^0 \to \phi \phi \to (\tau^+ \tau^-)(\tau^+ \tau^-)$

Chang, Dermisek, Gunion, Weiner, arXiv: 0801.4554

Mariangela Lisanti

Mariangela Lisanti

Outline

- I. Light pseudoscalar phenomenology
- II. Cascade-decaying higgses at colliders
- III. Preliminary results from DØ experiment

Model

Two Higgs doublet model with additional singlet

$$H_{u} = \begin{pmatrix} H_{u}^{+} \\ \frac{1}{\sqrt{2}}(v\sin\beta + h_{u}) \end{pmatrix} e^{ia_{u}/v\sin\beta} \qquad H_{d} = \begin{pmatrix} \frac{1}{\sqrt{2}}(v\cos\beta + h_{d}) \\ H_{d}^{-} \end{pmatrix} e^{ia_{d}/v\cos\beta}$$
$$S = \frac{1}{\sqrt{2}}(\langle S \rangle + s^{0})e^{ia_{s}/\langle S \rangle}$$

The interactions between the three pseudoscalars a_u, a_d, a_s arise from (i) derivative couplings in kinetic terms (ii) symmetry breaking terms in the potential

Symmetry Breaking

$$\mathcal{L} = \mathcal{L}_{\rm kin} - \lambda_1 S^2 H_u^{\dagger} H_d^{\dagger} - \lambda_2 S^2 H_u H_d + \text{h.c.}$$

$$\textcircled{1}$$

(Pseudo-) Goldstones

(1)
$$\omega_{Z^0} = -a_u \sin\beta + a_d \cos\beta$$

Gives mass to the Z⁰

Mariangela Lisanti

Symmetry Breaking

(Pseudo-) Goldstones

(1)
$$\omega_{Z^0} = -a_u \sin\beta + a_d \cos\beta$$

2
$$A^0 = \cos \theta_a (a_u \cos \beta + a_d \sin \beta) - a_s \sin \theta_a$$
 Heavy pseudo-Goldstone

Symmetry Breaking

$$\mathcal{L} = \mathcal{L}_{\text{kin}} - \lambda_1 S^2 H_u^{\dagger} H_d^{\dagger} - \lambda_2 S^2 H_u H_d + \text{h.c.}$$

$$(1) \qquad (2) \qquad (3)$$

(Pseudo-) Goldstones

(1)
$$\omega_{Z^0} = -a_u \sin \beta + a_d \cos \beta$$
 Gives mass to the Z⁰

2
$$A^0 = \cos \theta_a (a_u \cos \beta + a_d \sin \beta) - a_s \sin \theta_a$$
 Heavy pseudo-Goldstone

(3)
$$a^0 = \sin \theta_a (a_u \cos \beta + a_d \sin \beta) + a_s \cos \theta_a$$
 Light pseudo-Goldstone

Coupling to Higgs

$$\mathcal{L}_{\rm int} = \tilde{c}_h \frac{v}{\langle S \rangle^2} h^0 \partial_\mu a^0 \partial^\mu a^0 - \tilde{d}_h \frac{m_{a^0}^2}{v} h^0 a^0 a^0$$

Coupling to Fermions

$$\mathcal{L}_{\rm int} = ig_f \frac{m_f}{v} \bar{f} \gamma_5 f a^0$$

 $g_f = \sin \theta_a \begin{cases} \cot \beta & (\text{up-type quarks}) & \leftarrow \text{suppressed by 2 powers of } \tan \beta \\ \tan \beta & (\text{down-type quarks/leptons}) \end{cases}$

Below the b-quark threshold, pseudoscalar decays primarily to taus rather than charm quarks

CLEO limits CLEO sets limits on the coupling of a⁰ to fermions $\frac{\mathrm{Br}(\Upsilon \to a^0 \gamma)}{\mathrm{Br}(\Upsilon \to \mu^+ \mu^-)} \propto g_d^2 \left(1 - \frac{m_{a^0}^2}{m_{\Upsilon}^2} \right)$ 2.0 90% exclusion 1.5 Region allowed by LEP $\langle S \rangle / \sin 2\beta \sim 250 \text{ GeV}$ for 87-110 GeV Higgs 1.0 g_d $\langle S \rangle / \sin 2\beta \sim 500 \text{ GeV}$ 0.5 $\langle S \rangle / \sin 2\beta \sim 1000 \text{ GeV}$ 0.0 4 5 6 8 7 9 m_{a^0} (GeV)

Mariangela Lisanti

CLEO limits

CLEO sets limits on the coupling of a⁰ to fermions

$$\frac{\mathrm{Br}(\Upsilon \to a^0 \gamma)}{\mathrm{Br}(\Upsilon \to \mu^+ \mu^-)} \propto g_d^2 \left(1 - \frac{m_{a^0}^2}{m_{\Upsilon}^2} \right)$$

<u>Tension</u> LEP results prefer strong coupling of pseudoscalar to Higgs... but CLEO results tightly bound this region

Mariangela Lisanti

Outline

- I. Light pseudoscalar phenomenology
- II. Cascade-decaying higgses at colliders
- III. Preliminary results from DØ experiment

<u>Signal</u>

$$h^0 \to 4\tau \to \text{leptons} + \not\!\!E_T$$

Challenges

- Tau decays leptonically 33% of time
- Leptons are soft

Mariangela Lisanti

Mariangela Lisanti

Branching fraction of a⁰ to muons is much smaller than that to taus

$$\frac{\Gamma(a^0 \to \mu^+ \mu^-)}{\Gamma(a^0 \to \tau^+ \tau^-)} = \frac{m_{\mu}^2}{m_{\tau}^2 \sqrt{1 - (2m_{\tau}/m_{a^0})^2}}$$

Mariangela Lisanti

Branching fraction of a⁰ to muons is much smaller than that to taus

$$\frac{\Gamma(a^0 \to \mu^+ \mu^-)}{\Gamma(a^0 \to \tau^+ \tau^-)} = \frac{m_{\mu}^2}{m_{\tau}^2 \sqrt{1 - (2m_{\tau}/m_{a^0})^2}}$$

For 7 GeV pseudoscalar, $Br(a^0 \rightarrow \mu^+ \mu^-) = 0.4\%$ $Br(a^0 \rightarrow \tau^+ \tau^-) = 98\%$

Despite small branching fraction to muons...

300 events 20 fb⁻¹ Tevatron 250 events 0.5 fb⁻¹ LHC

Mariangela Lisanti

Kinematics

Characteristic Signatures

- collinear, high pT muon pair
- I or 2 jets opposite to the muons
- Missing energy acoplanar with muons

Main Backgrounds

Drell-Yan

Most important background Muons recoil against ISR jet

Missing energy from jet energy mismeasurement or neutrinos from heavy semileptonic decays in jet

Summary	
---------	--

$$\frac{d\sigma}{dM_{\mu\mu}}$$
 (fb/GeV)

	DY+j	\sim	tt
Tevatron	0.15	0.03	0.02
LHC	0.24	0.08	0.14

Mariangela Lisanti

DØ Results

Mariangela Lisanti

Conclusions

- Possible to evade LEP bound if Higgs decays primarily to pseudoscalars
- Light pseudoscalars typical when there is an approximate symmetry in Higgs potential that is broken
- Possible to discover cascading Higgs in $2\mu 2\tau$ channel with complete Tevatron data set or early data at LHC

Light Higgs in Theory

One-loop corrections to Higgs mass in MSSM:

$$m_{h^0}^2 \simeq m_{Z^0}^2 \cos^2 2\beta + \frac{3g^2 m_t^4}{8\pi^2 m_W^2} \left(\log \frac{m_{\tilde{t}}^2}{m_t^2} + a_t^2 \left(1 - \frac{a_t^2}{12}\right)\right)$$

Mass corrections depend on stop mass $m_{ ilde{t}}$ and mixing $a_t \simeq rac{A_t}{m_{ ilde{t}}}$

Moderate Mixing	Maximal Mixing	
m _h =120 GeV	m _h =130 GeV	$m_{\tilde{t}} = 1 \text{ TeV}$
	m _h =120 GeV	$m_{\tilde{t}} = 400 \text{ GeV}$

LEP Limits

LEP sets limits on branching fraction of Higgs into Standard Model

$$\xi_{h \to X}^2 \equiv \frac{\sigma(e^+e^- \to Zh)}{\sigma(e^+e^- \to Zh)_{\rm SM}} \text{Br}(h \to X)$$

This translates into a bound on coupling strength of Higgs to a⁰

Hadronic Backgrounds

(i) Double semi-leptonic decays

Background: $b \rightarrow c \rightarrow s/d$

Minimal because: hadronic activity surrounding muons high pT muons are rare

(ii) Heavy flavor quarkonia

Background: $\Upsilon \rightarrow \tau$'s $\rightarrow \mu$'s

Minimal because: missing energy in direction of muon pair pT spectrum of Υ falls off rapidly

(ii) Leptonic decays of light mesons

Background: J/Ψ muon invariant mass distribution

Minimal because: Lorentzian tail of decay width Gaussian mismeasurement tail

Hadronic contribution is << 10% Drell-Yan background

Mariangela Lisanti