# Studying Gaugino Mass Unification at the LHC

Michael Holmes Northeastern University

JHEP 0904 (2009) 114 with B. Altunkaynak, P. Grajek, G. Kane and B. Nelson

May 11, 2009

- Assume SUSY discovered early on at LHC
- Want to determine broad characteristics of underlying theory
  - $\rightarrow\,$  Can we determine if gaugino masses are universal independent of actual model?
- Assume MSSM with gaugino masses obeying Mirage pattern

$$M_1 : M_2 : M_3 \simeq (1 + 0.66\alpha) : (2 + 0.2\alpha) : (6 - 1.8\alpha)$$

- Can we demonstrate  $\alpha \neq 0$  using a relatively small amount of luminosity?
- Approach: determine observables which are sensitive to small changes in  $\alpha$  with other SUSY soft terms held fixed
- Won't assume measurement of sparticle masses, will assume knowledge of soft term inputs (need to start somewhere)

 $\bullet$  SUSY "base model" defined via low scale soft terms and choice of  $\alpha$ 

$$\begin{pmatrix} \tan \beta, \ m_{H_u}^2, \ m_{H_d}^2 \\ M_3, \ A_t, \ A_b, \ A_\tau \\ m_{Q_{1,2}}, \ m_{U_{1,2}}, \ m_{D_{1,2}}, \ m_{L_{1,2}}, \ m_{E_{1,2}} \\ m_{Q_3}, \ m_{U_3}, \ m_{D_3}, \ m_{L_3}, \ m_{E_3} \end{pmatrix}$$

- \* Vary lpha from -0.5 to 1 in steps  $\Delta lpha = 0.05$
- \*  $M_1$  and  $M_2$  determined relative to  $M_3$  via Mirage ratio
- Each point of  $\alpha$  line generate 100k events (~ 5 fb<sup>-1</sup>)
- Model point data generated via PYTHIA 6.4 + PGS4 using level 1 triggers
- SM background sample: 5 fb<sup>-1</sup> of top, bottom, dijets and gauge boson production (both single and double)
- Appropriately weight SM background to include with each signal sample

## Method cont'd

#### Initial object level cuts

| Object   | Minimum <i>p</i> <sub>T</sub> | Minimum $ \eta $ |
|----------|-------------------------------|------------------|
| Photon   | 20 GeV                        | 2.0              |
| Electron | 20 GeV                        | 2.0              |
| Muon     | 20 GeV                        | 2.0              |
| Tau      | 20 GeV                        | 2.4              |
| Jet      | 50 GeV                        | 3.0              |

#### Event level cuts

- \* *₽*<sub>T</sub> > 150 GeV
- \* Transverse sphericity  $S_T > 0.1$
- \*  $H_T >$  600 GeV or 400 GeV (events with  $\geq$  2 leptons)  $H_T = E_T + \sum_{
  m iets} p_T^{
  m jet}$
- Signatures found using ROOT based analysis package Parvicursor http://www.atsweb.neu.edu/ialtunkaynak/heptools.html#parvicursor
- $\bullet\,$  Start with hundreds of signatures  $\to\,$  remove redundancies  $\to\,128\,$  sigs

## Signatures

• Initial set of 128 signatures = 46 counting + 82 kinematic distributions

- \* Signatures applied to specific final state event topologies
  - i.e. [ $\geq$  2 *b*-jets], [ $\geq$  1 leptons,  $\leq$  4 jets], etc
- \* Counting: OS dilepton, trileptons, 2 b-jet, etc
- \* Kinematic distributions:  $p_T$ ,  $M_{\rm inv}$ ,  $M_{\rm eff}$
- \* Integrate distributions over appropriately chosen ranges to obtain counts
- Minimum luminosity required to separate two models using *n* sigs at confidence level *p*:

$$L_{\min} = \frac{\lambda_{\min}(n, p)}{R_{AB}} \qquad R_{AB} = \sum_{i} (R_{AB})_{i} = \sum_{i} \frac{\left(\sigma_{i}^{A} - \sigma_{i}^{B}\right)^{2}}{\sigma_{i}^{A} + \sigma_{i}^{B}}$$

- Want to select set of n sigs so L<sub>min</sub>(p) is small as possible over wide array of model pairs A and B
- Need to do our best to ensure signatures minimally correlated

### Best Signatures

- For an  $\alpha$  line can we distinguish  $\alpha \neq \mathbf{0}$  from "data", i.e.  $\alpha = \mathbf{0}$  ?
  - $\rightarrow$  For two models A & B compute  $(R_{AB})_i$  for 128 signatures
  - $\rightarrow\,$  Select signatures which best detect changes in  $\alpha$  for this model pair
- Determine best signatures for other model pairs
- Average over ensemble of models to determine which sigs best at tracking changes in  $\alpha$  across different model inputs
- Partition data according to final state topologies to minimize correlations:

 $N_{
m jets} \le 4 \text{ versus } N_{
m jets} \ge 5,$  $N_{
m leptons} = 0 \text{ versus } N_{
m leptons} \ge 1.$ 

## **Optimal Lists**

- ullet Ultimately form 3 lists which best track changes in  $\alpha$
- Single most effective signature to distinguish models

|                  | Description                                                               | Min Value | Max Value |
|------------------|---------------------------------------------------------------------------|-----------|-----------|
| 1                | $M_{\rm eff}^{\rm any} = E_T + \sum_{\rm all} p_T^{\rm all}$ [All events] | 1250 GeV  | End       |
| Signature List A |                                                                           |           |           |

 $\bullet$  Best signatures with maximum correlation of 10%

|                  | Description                                                           | Min Value | Max Value |
|------------------|-----------------------------------------------------------------------|-----------|-----------|
| 1                | $M_{\rm eff}^{\rm jets}$ [0 leptons, $\geq$ 5 jets]                   | 1100 GeV  | End       |
| 2                | $M_{\rm eff}^{\rm affy}$ [0 leptons, $\leq$ 4 jets]                   | 1450 GeV  | End       |
| 3                | $M_{\rm eff}^{\rm amy} [\geq 1 \text{ leptons}, \leq 4 \text{ jets}]$ | 1550 GeV  | End       |
| 4                | $p_T$ (Hardest Lepton) [ $\geq 1$ lepton, $\geq 5$ jets]              | 150 GeV   | End       |
| 5                | $M_{ m inv}^{ m jets}$ [0 leptons, $\leq$ 4 jets]                     | 0 GeV     | 850 GeV   |
| Signature List P |                                                                       |           |           |

Signature List B

- $\bullet\,$  Allow correlations as high as  $30\%\,$
- First instance of true counting signatures

| Description                                                                                                                                                                                            |                                                                                | Min Value | Max Value |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------|-----------|--|
| Counting Signatures                                                                                                                                                                                    |                                                                                |           |           |  |
| 1                                                                                                                                                                                                      | $N_{\ell}$ [ $\geq 1$ leptons, $\leq 4$ jets]                                  |           |           |  |
| 2                                                                                                                                                                                                      | $N_{\ell^{+}\ell^{-}} [M_{\rm inv}^{\ell^{+}\ell^{-}} = M_Z \pm 5  {\rm GeV}]$ |           |           |  |
| 3                                                                                                                                                                                                      | $N_B^{\circ}$ [ $\geq 2$ B-jets]                                               |           |           |  |
|                                                                                                                                                                                                        | [0 leptons, $\leq$ 4 jets]                                                     |           |           |  |
| 4                                                                                                                                                                                                      | $M_{\rm eff}^{\rm any}$                                                        | 1000 GeV  | End       |  |
| 5                                                                                                                                                                                                      | $M_{\rm inv}^{\rm jets}$                                                       | 750 GeV   | End       |  |
| 6                                                                                                                                                                                                      | E/T                                                                            | 500 GeV   | End       |  |
|                                                                                                                                                                                                        | [0 leptons, $\geq$ 5 je                                                        | ts]       |           |  |
| 7                                                                                                                                                                                                      | $M_{\rm eff}^{\rm any}$                                                        | 1250 GeV  | 3500 GeV  |  |
| 8                                                                                                                                                                                                      | $r_{\rm jet}$ [3 jets > 200 GeV]                                               | 0.25      | 1.0       |  |
| 9                                                                                                                                                                                                      | $p_T$ (4th Hardest Jet)                                                        | 125 GeV   | End       |  |
| 10                                                                                                                                                                                                     | $E_T/M_{\rm eff}^{\rm any}$                                                    | 0.0       | 0.25      |  |
|                                                                                                                                                                                                        | $\geq 1$ leptons, $\geq 5$                                                     | jets]     |           |  |
| 11                                                                                                                                                                                                     | $E_T/M_{\rm eff}^{\rm any}$                                                    | 0.0       | 0.25      |  |
| 12                                                                                                                                                                                                     | $p_T$ (Hardest Lepton)                                                         | 150 GeV   | End       |  |
| 13                                                                                                                                                                                                     | $p_T$ (4th Hardest Jet)                                                        | 125 GeV   | End       |  |
| 14                                                                                                                                                                                                     | $E_T + M_{\rm eff}^{\rm jets}$                                                 | 1250 GeV  | End       |  |
| Signature List C                                                                                                                                                                                       |                                                                                |           |           |  |
|                                                                                                                                                                                                        |                                                                                |           |           |  |
| $\textit{r}_{ m jet} \equiv \left(\textit{p}_{\mathcal{T}}^{ m jet3} + \textit{p}_{\mathcal{T}}^{ m jet4} ight) / \left(\textit{p}_{\mathcal{T}}^{ m jet1} + \textit{p}_{\mathcal{T}}^{ m jet2} ight)$ |                                                                                |           |           |  |

 $\bullet~{\rm Predicts}~\alpha\simeq 1$ 

dominant processes  $qg 
ightarrow \widetilde{q}\widetilde{g}, \ gg 
ightarrow \widetilde{t}_1\widetilde{\overline{t}}_1$ 

| $m_{\widetilde{N}_1}$     | 338.7 | $m_{\tilde{t}_1}$          | 379.9 |
|---------------------------|-------|----------------------------|-------|
| $m_{\widetilde{N}_2}$     | 440.2 | $m_{\tilde{t}_2}$          | 739.1 |
| $m_{\tilde{N}_2}$         | 622.8 | $m_{\tilde{u}_L}$          | 811.7 |
| $m_{\widetilde{N}_4}$     | 634.3 | m <sub>ũ<sub>R</sub></sub> | 793.3 |
| $m_{\tilde{c}_1^{\pm}}$   | 440.1 | $m_{\tilde{b}_1}$          | 676.8 |
| $m_{\tilde{c}_2^{\pm}}$   | 635.0 | $m_{\tilde{b}_2}$          | 782.4 |
| m <sub>ĝ</sub>            | 818.0 | $m_{\tilde{d}_i}$          | 815.4 |
| $\mu$                     | 625.2 | $m_{\tilde{d}_R}$          | 793.5 |
| $m_h$                     | 119.5 | $m_{\tilde{\tau}_1}$       | 500.4 |
| m <sub>A</sub>            | 807.4 | $m_{\tilde{\tau}_2}$       | 540.4 |
| <i>m<sub>H</sub></i> 0    | 806.8 | mē                         | 545.1 |
| $m_{H^{\pm}}$             | 811.1 | $m_{\tilde{e}_R}$          | 514.6 |
| spectra [GeV] at $lpha=1$ |       |                            |       |





• 1449 model points varied in a controlled manner

| Input Parameter Range                                                                                                  | Variation |
|------------------------------------------------------------------------------------------------------------------------|-----------|
| $400~{\rm GeV} \geq M_3 \geq 800~{\rm GeV}$                                                                            | 5 steps   |
| 400 ${ m GeV} \ge \mu \ge$ 1000 ${ m GeV}$                                                                             | 5 steps   |
| $300~{ m GeV} \geq (m_{	ilde{e}_{L,R}},m_{	ilde{	au}_{L,R}}) \geq 700~{ m GeV}$                                        | 5 steps   |
| $500 \text{ GeV} \geq (m_{\tilde{Q}_L}, m_{\tilde{q}_L}, m_{\tilde{t}_{L,R}}, m_{\tilde{b}L,R}) \geq 1000 \text{ GeV}$ | 5 steps   |
| aneta=10                                                                                                               | Fixed     |
| $m_A = 1000  { m GeV}$                                                                                                 | Fixed     |
| $A_{	au}, A_t, A_b, A_e, A_u, A_d = 0$                                                                                 | Fixed     |

Largest Production Channel

| Mode                                | $\alpha = 0$                       | $\alpha = 0.33$                                                                  | $\alpha = 0.66$                                                                | $\alpha = 1.0$                       |
|-------------------------------------|------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------|
| $gg  ightarrow 	ilde{g} 	ilde{g}$   | 44.6%                              | 45.2%                                                                            | 42.9%                                                                          | 44.8%                                |
| $fg  ightarrow 	ilde{q}_R 	ilde{g}$ | 31.1%                              | 30.2%                                                                            | 33.1%                                                                          | 35.7%                                |
| $fg  ightarrow 	ilde{q}_L 	ilde{g}$ | 24.3%                              | 25.5%                                                                            | 23.9%                                                                          | 19.4%                                |
| Second Largest Production Channel   |                                    |                                                                                  |                                                                                |                                      |
|                                     |                                    |                                                                                  |                                                                                |                                      |
| Mode                                | $\alpha = 0$                       | $\alpha = 0.33$                                                                  | $\alpha = 0.66$                                                                | $\alpha = 1.0$                       |
| $Mode$ $gg \to \tilde{g}\tilde{g}$  | $\alpha = 0$ 2.7%                  | $\alpha = 0.33$ 2.1%                                                             | $\alpha = 0.66$ 2.8%                                                           | $\alpha = 1.0$ 1.4%                  |
|                                     | lpha = 0<br>2.7%<br>42.0%          | lpha = 0.33<br>2.1%<br>48.8%                                                     | $\alpha = 0.66$<br>2.8%<br>47.5%                                               | $\alpha = 1.0$<br>1.4%<br>45.2%      |
|                                     | lpha = 0<br>2.7%<br>42.0%<br>42.0% | $\begin{array}{c} \alpha = 0.33 \\ \hline 2.1\% \\ 48.8\% \\ 47.1\% \end{array}$ | $ \begin{array}{r} \alpha = 0.66 \\ 2.8\% \\ 47.5\% \\ 49.6\% \\ \end{array} $ | lpha = 1.0<br>1.4%<br>45.2%<br>53.3% |





## **Ensemble of Models**

- How well do the lists fare on general SUSY models?
- To test procedure, apply to ensemble of 500 random models
  - Each model has 0 ≤ α ≤ 0.5 in steps of Δα = 0.1
     300 ≤ m<sub>ℓ̃</sub>, m<sub>q̃</sub>, M<sub>3</sub>, μ ≤ 1200 GeV
     2 < tan β < 50, m<sub>A</sub> = 850 GeV
  - Generate 100k events for each of 6 points along  $\alpha$  lines





 $\leftarrow \ \ L_{\rm min} \ {\rm needed} \ {\rm to} \ {\rm detect} \ \alpha \neq {\rm 0} \ {\rm for} \ {\rm 95\%} \\ {\rm of} \ {\rm the} \ {\rm random} \ {\rm models}$ 

**Ensemble of Models** 

Percentage of random models that can be distinguished Top plots compare  $\alpha = 0$  to  $\alpha = 0.1$ ; bottom plots compare  $\alpha = 0$  to  $\alpha = 0.3$ 



- First step toward determining gaugino universality at LHC
- Demonstrated effectiveness of using targeted observables albeit in an artifical scenario
- Under our assumptions and framework LHC can determine gaugino mass non-universality
  - $\rightarrow~10\%$  level with 25-50  $fb^{-1}$  over 80% of investigated parameter space
  - $\rightarrow~30\%$  level with 5-10 fb $^{-1}$  over 95% of investigated parameter space
- Outlook and improvements
  - \* Response of lists to other SUSY parameter variation
  - \* Generalized gaugino mass parametrization
  - \* Fully remove model dependence
  - \* Include inclusive kinematic measurements: endpoints  $(m_{\tilde{N}_2} m_{\tilde{N}_1})$ ,  $m_{T2}$ , etc

### Thank You!

#### Model B List B

