A Heavy Higgs and a Light Sneutrino NLSP In the MSSM with Enhanced

SU(2) D-terms

Anibal D. Medina

Department of Physics

UC Davis

arXiv:0904.1625[hep-ph].

Co-authors: Nausheen Shah and Carlos Wagner.

Motivation

- MSSM solves the hierarchy problem and provides a DM candidate with R-parity.
- Includes a Higgs boson with a mass naturally of order M_z.
- LEP bound \longrightarrow large radiative corrections \longrightarrow large squark masses \longrightarrow tension with solving the hierarchy problem.
- Situation may improve by extending weak gauge group to $SU(2)_1 \times SU(2)_2$ (Batra et al, JHEP 0406.032, 2004):
- 1. Higgs sector and 3rd generation fermions charged under SU(2)₁.
- 2. 1^{st} and 2^{nd} generation fermions charged under $SU(2)_2$.
- SUSY breaking mass associated with scalars that break $SU(2)_1 \times SU(2)_2 \longrightarrow SU(2)_W$ larger than their vevs lead to enhanced D-terms raise Higgs mass (m_h <300 GeV).
- Corrections to EWPT:
- 1. Gauge boson mixing small if gauge symmetry breaking scalars vev's are large.
- 2. Large Higgs mass \rightarrow negative contribution to ΔT .

Review of the Model

Breakdown SU(2)₁×SU(2)₂ → SU(2)_W governed by,

$$W = \lambda_1 S \left(\frac{\Sigma \Sigma}{2} - w^2 \right)$$

Leads to a Σ potential,

$$V = m_{\Sigma}^2 \Sigma^{\dagger} \Sigma + \frac{\lambda_1^2}{4} |\Sigma \Sigma|^2 - \frac{B}{2} (\Sigma \Sigma + h.c.) + \dots$$

where $B=\lambda_1\omega$ and m_{Σ}^2 is a soft SUSY breaking mass. Also D-terms contribution,

$$\Delta V = \frac{g_1^2}{8} \left(\text{Tr}[\Sigma^{\dagger} \tau^{a} \Sigma] + H_u^{\dagger} \tau^{a} H_u + H_d^{\dagger} \tau^{a} H_d + L^{\dagger} \tau^{a} L + Q^{\dagger} \tau^{a} Q \right)^2 + \frac{g_2^2}{8} \left(\text{Tr}[\Sigma^{\dagger} \tau^{a} \Sigma] + \dots \right)^2$$

• For B>m² $_{\Sigma}$, $\langle \Sigma \rangle$ =uI , with u²=(B- m² $_{\Sigma}$)/ λ_1^2 . Assuming B>>v², integrate out heavy d.o.f,

$$\Delta V = \frac{g^2}{2} \Delta \sum_a \left(H_u^{\dagger} \tau^a H_u + H_d^{\dagger} \tau^a H_d + L_3^{\dagger} \tau^a L_3 + Q_3^{\dagger} \tau^a Q_3 \right)^2 \qquad \text{with} \qquad \Delta = \frac{1 + \frac{2m_{\Sigma}^2}{g_2^2 u^2}}{1 + \frac{2m_{\Sigma}^2}{(g_2^2 + g_1^2)u^2}}$$

· Therefore,

$$m_h^2 = \frac{1}{2} \left(g^2 \Delta + g_Y^2 \right) v^2 \cos^2 2\beta + \text{loop corrections}$$

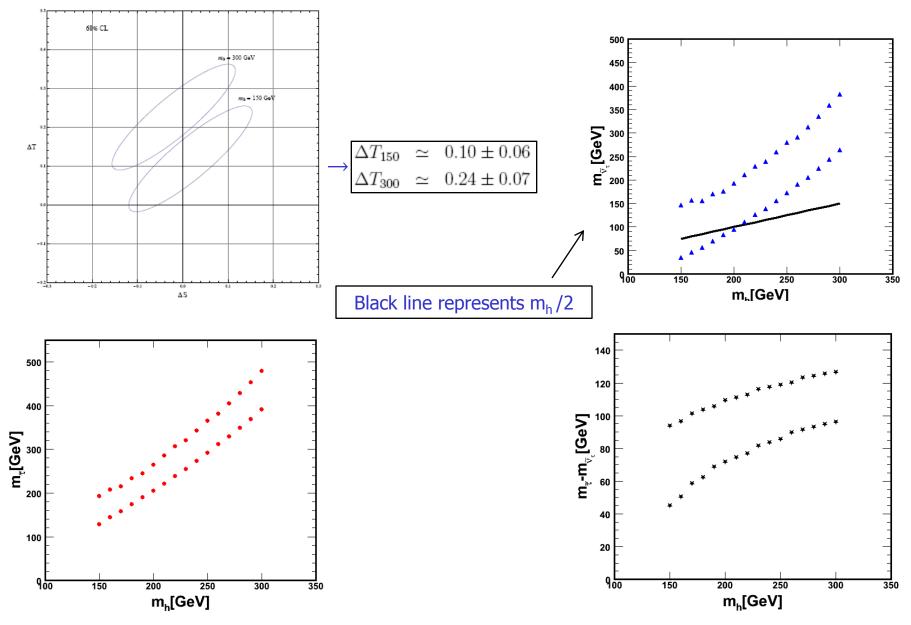
Sparticle mass splitting and contributions to ΔT

• Re-write SU(2) D-term effective potential, $V_D = \frac{g^2 \Delta}{8} \left(\sum_i \Phi_i^\dagger \Phi_i \right)^2 - \frac{g^2 \Delta}{4} \sum_i \left| \Phi_i^T i \sigma_2 \Phi_j \right|^2$

$$m_{\tilde{\tau}_L}^2 - m_{\tilde{\nu}_{\tau}}^2 = \Delta_D \qquad \text{with} \qquad \Delta_D = \frac{g^2 v^2}{2} \Delta |\cos 2\beta|$$

$$m_{\tilde{b}_L}^2 - m_{\tilde{t}_L}^2 = \Delta_D - m_t^2 \qquad = (\Delta m_h^2)_D / |\cos 2\beta|$$

For the charged Higgs H⁺ and CP-odd Higgs A,


$$m_{H^{\pm}}^2 - m_A^2 = \frac{g^2 \Delta}{2} v^2$$

•Upper and lower component mass splitting of SU(2) doublet lead to,

$$\Delta T = \frac{N_c}{12\pi s_W^2 m_W^2} (\Delta m_{ud})^2$$
$$= \frac{N_c}{12\pi s_W^2 m_W^2} \frac{(\Delta m_{ud}^2)^2}{(m_u + m_d)^2}$$

• Which must be added to $\Delta T = -\frac{3}{8\pi c_W^2} \ln\frac{m_h}{m_{h_{\rm ref}}}$ $\Delta S = \frac{1}{6\pi} \ln\frac{m_h}{m_{h_{\rm ref}}},$

Slepton spectrum with no mixing

Supersymmetric Model

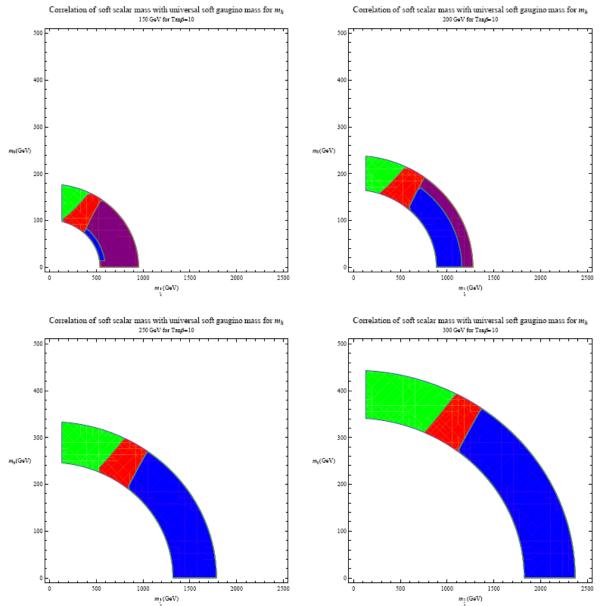
- Input: Moderate $\tan \beta$, universal gaugino mass $M_{1/2}$, universal soft scalar mass M_0 for squarks and sleptons, soft SUSY breaking Higgs masses $m_{Hu}^2 = m_{Hd}^2$, positive $sign(\mu)$ and $A_t = A_b = A_\tau = 0$, at the messenger scale $M \sim M_{GUT}$.
- SUSY breaking transmitted to the visible sector only via $SU(3)_c \times SU(2)_2 \times U(1)_Y$ gauginos for 3rd generation sleptons to remain light.
- One loop RGE for 3rd generation sleptons and gauginos

$$16\pi^{2} \frac{d}{dt} m_{L_{3}}^{2} = -\frac{6}{5} g_{Y}^{2} |M_{Y}|^{2} - \frac{3}{5} g_{Y}^{2} S$$

$$16\pi^{2} \frac{d}{dt} m_{\tilde{\tau}_{R}}^{2} = -\frac{24}{5} g_{Y}^{2} |M_{Y}|^{2} + \frac{6}{5} g_{Y}^{2} S$$

$$16\pi^{2} \frac{d}{dt} M_{i}^{2} = 4b_{i} g_{i}^{2} M_{i}^{2}$$

where $b_i = (36/5, -1, 1, -3)$ at high energy and after gauge breakdown $b_i = (33/5, 1, -3)$.


Approximate solutions,

$$m_{L_3}^2 \simeq m_0^2 + 0.04 \ M_{1/2}^2, \qquad m_{\tilde{\tau}_R}^2 \simeq m_0^2 + 0.15 \ M_{1/2}^2 \qquad M_Y \simeq 0.35 \ M_{1/2}, \qquad M_2 \simeq 0.8 \ M_{1/2}^2$$

imply that tau sneutrino is the lightest SM partner.

• For a fixed Higgs mass and no mixing \rightarrow ellipsoidal area in M_0 vs $M_{1/2}$ plane from demanding consistency with EWPT.

M_0 vs $M_{1/2}$

Low energy spectrum

• Calculate low energy particle spectrum using SDECAY. Hard leptons from W decay in $\tilde{\tau}_1^{\pm} \to W^{\pm} \tilde{\nu}_{\tau}$. Presence of many tau's and copious missing energy in the final states. Example for $m_h = 210$ GeV, $M_{1/2} = 700$ GeV, $\tan \beta = 10$, $M_0 = 150$ GeV, $m_{Hu} = m_{hd} = (100$ GeV)² and $\Delta = 6.13$.

Sparticle	Mass[GeV]	Dominant decay modes				
\tilde{g}	1564	$\tilde{q}_L q$ (16.2)%, $\tilde{q}_R q$ (31.4)%, $\tilde{b}_{1,2} b$ (20) %, $\tilde{t}_1 t$ (24) %				
\tilde{u}_L, \tilde{d}_L	1428, 1429	$\tilde{\chi}_{2}^{0}q$ (32) %, $\tilde{\chi}_{1}^{\pm}q'$ (64) %				
\tilde{u}_R, \tilde{d}_R	1374,1368	$\tilde{\chi}_{1}^{0}q$ (99) %				
\widetilde{t}_1	1112	$\tilde{\chi}_{1}^{+}b$ (19) %, $\tilde{\chi}_{1}^{0}t$ (25) %, $\tilde{\chi}_{3}^{0}t$ (17) %, $\tilde{\chi}_{2}^{+}b$ (23) %				
H^+	967					
A	946	_				
$\tilde{\chi}_{4}^{0}$	864	$\tilde{\chi}_1^{\pm}W^{\mp}$ (56) %, $\tilde{\chi}_2^0h$ (19) %				
$\tilde{\chi}_2^{\pm}$	864	$\tilde{\chi}_{2}^{0}W^{\pm}$ (28) %, $\tilde{\chi}_{1}^{\pm}Z$ (28) %, $\tilde{\chi}_{1}^{\pm}h$ (20) %				
$\tilde{\chi}_3^0$	852	$\tilde{\chi}_1^{\pm}W^{\mp}$ (56) %, $\tilde{\chi}_2^{0}Z$ (26) %				
$\tilde{\chi}_{2}^{0}$	551	$\tilde{\nu}_{\tau}\nu_{\tau}$ (47) %, $\tilde{\tau}_{1}^{\pm}\tau^{\mp}$ (39) %				
$\begin{array}{c} A \\ \tilde{\chi}_4^0 \\ \tilde{\chi}_2^\pm \\ \tilde{\chi}_3^0 \\ \tilde{\chi}_2^0 \\ \tilde{\chi}_1^\pm \\ \tilde{e}_L \\ \tilde{\nu}_e \end{array}$	551	$\tilde{\nu}_{\tau}\tau^{\pm}$ (49) %, $\tilde{\tau}_{1}^{\pm}\nu_{\tau}$ (37) %				
\tilde{e}_L	486	$\tilde{\chi}_{1}^{0}e$ (100) %				
	480	$\tilde{\chi}_{1}^{0}\nu_{e}$ (100) %				
\tilde{e}_R	300	$\tilde{\chi}_{1}^{0}e$ (100) %				
$ ilde{ au}_2$	303	$\tilde{\chi}_{1}^{0}\tau$ (72) %, $\tilde{\nu}_{\tau}W$ (28) %				
$\tilde{\chi}_1^0$	249	$\tilde{\nu}_{\tau}\nu_{\tau}$ (90) %, $\tilde{\tau}_{1}^{\pm}\tau^{\mp}$ (10) %				
$\begin{array}{c} \tilde{e}_R \\ \tilde{\tau}_2 \\ \tilde{\chi}_1^0 \\ \tilde{\tau}_1 \end{array}$	217	$\tilde{\nu}_{\tau}W$ (100) %				
$\tilde{\nu}_{\tau}$	132	$ ilde{G} u_{ au}$				

Cosmological Constraints

- Gravitino LSP produced by scattering processes at reheating epoch ($\Omega_{\tilde{\nu}_{\tau}}h^2 \approx \mathcal{O}(10^{-3})$)
- Sneutrino NLSP $\tilde{\nu}_{ au} o \tilde{G} + \nu_{ au}$. Bino NLSP excluded by late decay into photon and gravitino .
- For the range of masses considered (40 GeV< m_{snu} <400 GeV, 1 GeV< m_{grav} <100 GeV) the lifetime Γ_{snu} >10⁷ seconds.
- Possible constraints from high energy neutrinos scattering off of BG neutrinos and multibody sneutrino decays lead to almost no constraint (m_{snu} – m_{grav} <300 GeV for m_{grav} <10 GeV) except for the larger Higgs masses.

Non-vanishing SU(2)₁ gaugino masses

- Assume non-vanishing $M_2 \rightarrow$ slepton and squark masses increase at low energy.
- At one loop, M_2 effect is small for m_A and m_{H+} in the large tan β limit, since m_{Hu} and m_{Hd} are both affected in analogous way. It is up to the non-standard Higgs bosons to compensate for ΔT .
- Phenomenology similar to light stau NLSP in gaugino mediation models. Model constraint by searches at Tevatron ($m_A > 170$ GeV).
- If the messenger scale M is very close to M_{GUT} we can have neutralino NLSP which co-annihilates with stau giving proper DM relic density.
- Point example, for $M_Y = M_2 = M_3$ 700 GeV, $M_1 = 400$ GeV, $\tan \beta = 48$, $M_0 = 360$ GeV, $m_{Hu} = m_{hd} = (200 \text{ GeV})^2$ and $\Delta = 5.9$.

m_h [C	eV]	$m_A [{\rm GeV}]$	m_{H^+} [GeV]	$m_{\tilde{\tau}_R}$ [GeV]	$m_{\tilde{\tau}_L}$ [GeV]	$m_{\tilde{\chi}_1^0} [\text{GeV}]$	$\mu \; [\text{GeV}]$	ΔT_{tot}
20	0	176	255	293	1020	275	321	0.12

Conclusions

- By D-term induced mass splitting in 3rd generation fermions and non-standard Higgs bosons, we are able to consistently raise the SM like Higgs mass up to 300 GeV.
- Phenomenological viable scenario of SUSY breaking that provides light sleptons determined by re-establishing agreement with EWP data.
- Collider signatures characterized by the presence of many tau's and copious missing energy in the final states. Presence of hard leptons for large values of Higgs mass.
- Small region of parameter space where Higgs can decay into sneutrinos (avoid Tevatron bounds).
- Alternative scenario with non-vanishing $M_2 \longrightarrow large \tan \beta$ for light non-standard Higgs A and H⁺ to remain light.