Standard Model Physics at the Tevatron

Ashutosh Kotwal Duke University

(for the CDF and D0 Collaborations)

Pheno 2009 Symposium Madison, 11 May 2009

Introduction

- Very rich Tevatron program: probes physics at the highest Q^2
 - Direct searches for new physics
 - Top physics
 - High E_T jets, leptons and photons
- ...to intermediate Q^2
 - Precision electroweak physics
- ...to low Q^2
 - B and charm physics
- Selected topics discussed today span the range of
 - Statistical and systematic contributions to precision
 - Importance of tracking, calorimetry and particle identification
 - Connections to LHC physics

Tevatron at Fermilab

Tevatron is routinely exceeding nominal Run II instantaneous luminosity target of $2x10^{32}$ /cm²/s

Recently achieved 3.5x10³² /cm²/s

Tevatron at Fermilab

Tevatron has delivered >6 fb⁻¹ of integrated luminosity

On track to deliver 9 fb⁻¹ by 2010

decision on running in 2011 pending

Collider Run II Integrated Luminosity

Collider Detector at Fermilab (CDF)

Silicon detector

D0 Detector

Outline

- Top quark physics
 - Cross sections in lepton+jets and dilepton channels
 - Top quark mass
 - Discovery of single top quark production
- Electroweak physics
 - W boson mass
- SM Higgs search
- Other direct searches, QCD and B physics
 - See the following talks

Top Quark Production at the Tevatron

Top Signals

- Is it the standard model top quark? Or does its large mass give it access to new physics? Probing the *tWb* electroweak vertex in top decays:
- Probes:
 - Event topology, Comparing cross sections in different decay modes

Top Signals

• Probes:

Standard Model Higgs Boson Production and Decay

Higgs Boson Production and Decay

- Take advantage of large $gg \rightarrow H$ production cross section
- Low Mass: H→bb, QCD bb background overwhelming
 - Use associated production with W or Z for background discrimination
 - WH \rightarrow lvbb, ZH \rightarrow vvbb (MET+bb), ZH \rightarrow llbb
- Also: Vector Boson Fusion Production, $VH \rightarrow qqbb$, $H \rightarrow \tau\tau$ (with 2 jets), $H \rightarrow \gamma\gamma$, WH->WWW, ttH

Light Higgs Boson Production and Decay

Multivariate Techniques for Signal/Background Discrimination

- Likelihood discriminants: Often using Standard Model Matrix Elements to compute differential probability distributions for kinematics
- Artificial Neural Networks: construct nonlinear function of kinematics
- Decision trees: event classification using sequential cuts

A simple neural network

input layer hidden layer output layer

SM Higgs: VH→vvbb

W (-> lv) + Higgs with lepton undetected also included in signal large branching ratio and acceptance for vector boson

SM Higgs: WH→lvbb

Results at mH = 115GeV: 95%CL Limits/SM

Analysis	Lum (fb ⁻¹)	Higgs Events	Exp. Limit	Obs. Limit
CDF NN	2.7	8.3	5.8	5.0
CDF ME+BDT	2.7	7.8	5.6	5.7
DØ NN	1.7	7.5	8.5	9.3

Key issue: shape of W+bb background

obtained from simulation, with normalization from data control regions

most sensitive channel for low-mass Higgs at Tevatron

Heavy Higgs Boson Production and Decay

Dileptons + missing E_T: Most sensitive channel at the Tevatron

Analysis	Lum (fb ⁻¹)	Higgs Events	Exp. Limit	Obs. Limit
CDF ME+NN	3.6	20.0	1.47	1.37
DØ NN	3.0-4.2	18.6	1.8	1.7

Key issue: maximizing lepton acceptance

Results at mH = 160 GeV : 95%CL Limits/SM

SM Higgs Boson Production Limits

Comparison of Higgs boson production cross section upper limit to the theoretical expectation

Tevatron Higgs Search Projections

- Improvements for low-mass Higgs in progress
 - Dijet mass resolution, increased lepton acceptance and b-tagging efficiency

Single Top Production

Milestone in Standard Model Observations towards the Higgs

Single Top Production

- Top quark discovered in 1995 at the Tevatron using the pair production mode
- Important measurement of the *t*-*b* coupling
- Similar final state as WH $\rightarrow lv + bb$ search
 - Therefore also a key milestone in the Higgs search

Single Top Production – Multivariate Techniques

- Small Signal/Background: ¹/₂ of top pair production cross section
- Fewer particles in the final state that top pair production
- Full power of diverse techniques employed:
 - Likelihoods based on SM matrix element probabilities
 - Neural networks
 - Decision trees

Observation of Single Top Production – Cross Sections

CDF and D0 papers submitted for publication significance of signal: CDF 5.0 σ (5.9 σ) observed (expected) D0 5.0 σ (4.5 σ) observed (expected)

Single Top Production & |V_{tb}|

- CKM matrix element V_{tb}
 - CDF: $V_{tb} = 0.91 \pm 0.11$ (stat+syst) ± 0.07 (theory)
 - $1 > V_{tb} > 0.71 (95\% \text{ CL})$
 - D0: $V_{tb} = 1.07 \pm 0.12$
 - $1 > V_{tb} > 0.78 (95\% \text{ CL})$
- No assumption on CKM unitarity or number of quark families

Precision Standard Model Measurements Constraining the Higgs and New Physics Precision Measurements of W boson and top quark masses

• Radiative corrections due to heavy quark and Higgs loops and exotica

• Top quark mass and W boson mass constrain the mass of the Higgs boson, and possibly new particles beyond the standard model

Top Quark Mass Measurement

Progress on M_{top} at the Tevatron

Progress on M_{top} at the Tevatron

2D fit for W->jj mass (to obtain jet energy scale JES) and top quark mass Neural Network for optimized event selection Matrix-element-based likelihood fitting in dilepton channel

Progress on M_{top} at the Tevatron

W Boson Mass Measurement

Motivation for M_W measurement

- SM Higgs fit: $M_{\rm H} = 83^{+30}_{-23}$ GeV (http://gfitter.desy.de)
- LEPII direct searches: $M_H > 114.4 \text{ GeV} @ 95\% \text{ CL} (PLB 565, 61)$

In addition to the Higgs, is there another missing piece in this puzzle?

$$(A_{FB}^{b} vs A_{LR}^{c}: 3.2\sigma)$$

Must continue improving precision of M_W, M_{top} ...

other precision measurements constrain Higgs, equivalent to $\delta M_W \sim 20$ MeV

Motivate direct measurement of M_W at the 20 MeV level

Standard Model Higgs Constraint

 M_W and leptonic measurements of $\sin^2\theta$ prefer low SM Higgs mass, hadronic (heavy flavor) measurements of $\sin^2\theta$ prefer higher SM Higgs mass (A^b_{FB} prefers ~ 500 GeV Higgs) Fits to

W Boson Mass Measurements

New preliminary result from D0: $M_W = 80401 \pm 23(\text{stat}) \pm 37(\text{syst})$

New Measurement of the W Boson Mass by D0

Best single measurement of M_W! Consistent results from lepton and neutrino p_T fits

Preliminary Studies of 2.4 fb⁻¹ Data at CDF

Summary

- CDF and D0 experiments at Fermilab Tevatron in pursuit of direct observation of standard model Higgs in the 115-200 GeV range
 - SM Higgs excluded for masses between 160-170 GeV @ 95% CL
- Production of single top quarks observed at the Tevatron
- Top quark mass $M_{top} = 173.1 \pm 0.6_{stat} \pm 1.1_{syst}$ GeV = 173.1 ± 1.3 GeV
- Preliminary W mass measurement from D0 is the most precise single measurement:
 - $M_{W} = 80401 \pm 23_{stat} \pm 37_{syst} \text{ MeV}$ = 80401 ± 44 MeV
- SM Higgs fit (gfitter.desy.de) excluding direct searches yields m_H < 155 GeV @ 95% CL (direct search limit is 2.5*SM @ 115 GeV)
- Tevatron pushing towards $\delta M_W < 25$ MeV and $\delta M_{top} < 1$ GeV