Flavor in the LHC Era

1

Flavor Physics

- Flavor physics studies where the different species of quarks (and leptons) come from.
- Many insights have come from this study:
 - earth-shattering: P and CP violation;
 - anticipation: existence of charm, mass of top.
- ✤ How many quark flavors in the LHC Era? 6

Flavor Physics

- Flavor physics studies where the different species of quarks (and leptons) come from.
- Many insights have come from this study:
 - earth-shattering: P and CP violation;
 - anticipation: existence of charm, mass of top.
- Solution State State

Quarks

\sim 2 SU(2) Doublets	✤ 6 SU(2) Singlets	
∽ $Y = 1/6$	$\rightsquigarrow Y = 2/3$	-1/3
\sim $(u d')_L$	∽ <i>U</i> R	d'_R
\sim $(c s')_L$	∽ CR	S'_R
\sim $(t b')_L$	$\sim t_R$	b' _R
' = electroweak basis	 Different fiel 	ds.

Line of Attack

- Continuation of Belle at KEK-B.
- ✤ LHCb at LHC.
- ✤ BES in Beijing.
- ✤ QCD, especially lattice QCD.
- SuperBelle, SuperB?, SuperDuperB???
- New kinds of flavor-electroweak conversations.

Standard Model and slightly beyond

- \sim A sector with doublet structure(s) breaks SU(2).
- The richness of flavor physics comes from the mass matrix that arises when this stuff (inevitably) interacts with *L* and *R* quark fields.
- Eigenvalues: masses.
- Eigenvectors/wf phases: CKM matrix.

CKM Matrix

 $V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

◆ V_{CKM} in 4-parameter subset of SU(3), with one irreducible phase \Rightarrow *CP* violation.

Unitarity:

6 dot-product constraints;

∞ 6 cross-product constraints: triangles.

• CKM-ness implies that all triangles have same area: $A = \frac{1}{2} \text{Im}[V_{ud}^* V_{ub}/V_{cd}^* V_{cb}] = \overline{\eta}/2.$

CKM Now

 $(\beta, \alpha, \gamma) = (\phi_1, \phi_2, \phi_3)$

Outline

✤ Future experimental tools.

- ✤ Lattice QCD.
- ✤ A pardigm shift?

Interplay of flavor and high-*pT* observations.

Future Experiments

LHCb

LHCb physics:

 \sim definitive measurement of $(\Delta\Gamma_{Bs}, \phi_s)$;

multitude of rare decays;

• precise measurement of $\gamma = \delta_{KM}$ via (weak) tree-level processes:

∼ γ to 5° (2.5°) in 2 (10) fb⁻¹, *i.e.*, sin δ_{KM} to 1% (0.6%).

BES III

- 100M ψ(2S) in
 March-April 2009.
- 500M J/ψ later in 2009.
- Charm physics later.

SuperB Factories

The grass is always greener on the other side (?)

Very preliminary parameter set for nano beam @ KEK. Without crab waist. Will mature in 6 months.

High current nano beam scheme possible with more RF.

Table 1: Comparison of the High-Current and Nano-Beam Schemes

	High-Current	Nano-Beam	
Stored $\operatorname{Current}(\operatorname{LER}/\operatorname{HER})$	9.4 / 4.1	\sim 2.6 / 1.5	А
Equiv. emittance(LER/HER)	\sim 20 / 20	$\sim 1 \ / \ 1$	nm
New arc magnets	None	LER dipoles + HER all	
New beam pipes	LER/HER	LER/HER	
More RF stations?	Yes	No	
Damping Ring	e^+	e^{\pm}	
Rel. construction cost	100	~ 70	%
Rel. operation cost	100	~ 80	%
Luminosity	4	8 (*)	10^{35}

(*) without crab waist

Y. Ushiroda @ HINTS

Lattice QCD

Lattice Status

Famous theorist, December 2006:

- "I'll believe a 3% lattice [QCD] theory error when the lattice has produced one successful prediction and several 3% postdictions."
- ✤ Nine 1–3% postdictions in March 2003 (in PRL).
- Three predictions in August 2004; November 2004; June 2005 (all in PRL). Verified by FOCUS, Belle, CLEO; CDF; CLEO, BaBar....

2+1 Sea Quarks! HPQCD, MILC, Fermilab Lattice, hep-lat/0304004

Predictions

Hadron Spectrum 1 MILC Col'n, *PRD* 70, 094505 (2004); arXiv:0903.3598

QCD postdicts the low-lying hadron masses!

Hadron Spectrum 2 PACS-CS Collaboration, PRD 79, 034503 (2009).

QCD postdicts the low-lying hadron masses!

Hadron Spectrum 3 BMW Collaboration: Science 322, 1224 (2008).

QCD postdicts the low-lying hadron masses!

$m = E/c^2$

The source of your weight problem is quantum chromodynamics

Quark Masses & as

Light quark masses (MILC+HPQCD): $m_{\mu} = 1.9 \pm 0.2 \, {\rm MeV},$ $m_d = 4.6 \pm 0.3 \text{ MeV},$ $m_{\rm s}=88~\pm~5~{\rm MeV}.$ with two-loop matching. Charmed quark mass [PT by Karlsruhe]: $\sim m_c(m_c) = 1.268(9)$ GeV [HPQCD lattice], $\sim m_c(m_c) = 1.268(12) \text{ GeV} [e^+e^- \text{ data}].$

Strong Coupling as

- Charmonium moments:
 - $\sim \alpha_{\rm s} = 0.1174(12)$
- Wilson loops:

- $\sim \alpha_s = 0.1183(8)$, HPQCD, arXiv:0807.1687;
- $\sim \alpha_s = 0.1192(11)$, Maltman, arXiv:0807.2020;
- ∼ α_s = 0.1185(9), PDG non-lat average (2008).

Assuming the SM:

V =

$$\begin{array}{ccccccc} V_{ud} & V_{us} & V_{ub} \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & &$$

trees loops no go

$|V_{us}|$

Flavianet Kaon WG: <u>http://ific.uv.es/flavianet/</u>

|V_{cb}|

alia et Jack Laiho et al., arXiv:0808.2519

- → $|V_{us}|$, $|V_{ub}|$, and $|V_{cb}|$ are the three real parameters of the CKM matrix; $|V_{cb}|$ normalizes everything.
- Exclusive $B \rightarrow D^* l v$: (zero recoil) form factor:

 $\mathcal{F}(1) = h_{A_1}(1), \quad \langle D^* | \mathcal{A}_{\mu} | B \rangle = i \sqrt{2m_{D^*} 2m_B \bar{\varepsilon}_{\mu}^*} h_{A_1}(1)$

• Unquenched lattice QCD calculation: $\mathcal{F}(1) = 0.921 \pm 0.013 \pm 0.008 \pm 0.008 \pm 0.014 \pm 0.007$ stats $g_{D^*D\pi} \chi PT \text{ match } m_Q$

Vub

alia et Ruth Van de Water, arXiv:0811.3640

- Exclusive $B \to \pi/\nu$: form factor $f_+(q^2)$ $\langle \pi | \mathcal{V}^{\mu}_{\perp} | B \rangle = (p_B + p_{\pi})^{\mu}_{\perp} f_+(q^2), \quad q \cdot p_{\perp} = 0$
- ✓ Model-independent analysis of q² dependence.
 ✓ Combined *z*-fit with BaBar: 10³|V_{ub}| = 3.38(36).

$|V_{cb}| \otimes |V_{ub}|$

- Using $\mathcal{F}(1)$ to get $|V_{cb}|$: $10^3 |V_{cb}| = 38.7(9)(10)$
 - with latest HFAG.
- Compared to inclusive:

 $10^3 |V_{cb}| = 41.6(8)$

from HFAG/ICHEP08.

- Final *z*-fit to get $|V_{ub}|$: $10^3 |V_{ub}| = 3.38(36)$
 - with BaBar 12-bin data.
- Compared to inclusive:

 $10^{3}|V_{ub}| = (3.76-4.87) \pm 0.35$ from HFAG/ICHEP08.

Being sorted out for CKM 2008 report.

CKM

- With |V_{us}|, |V_{ub}|, & |V_{cb}| from (semi)leptonic decays and γ from CP measurements, all of CKM fixed via tree-level decays:
 - \sim need LHCb for γ ;
 - \sim need lattice QCD for $|V_{qr}|$;
 - \sim need SuperB(elle) for $|V_{ub}|$;
 - ∞ exploit BES (like CLEO) for checks.

$f_B \text{ and } B_B$ Gamiz *et al.* [HPQCD], arXiv:0902.1815 ~ Recent 2+1 calculation of neutral B mixing: $f_{B_s} = 231 \pm 15 \text{ MeV} \qquad f_{B_s} \sqrt{B_{B_s}} = 266 \pm 18 \text{ MeV}$

 Decay constants 1σ lower than in hep-lat/0507015, stemming from 2nd, finer lattice spacing.

 $f_{B_d} \sqrt{B_{B_d}} = 216 \pm 15 \text{ MeV}$

 $\xi = 1.258 \pm 0.033$

✓ Fermilab/MILC (Lat'08 preliminary):
 $f_B = 195 \pm 11 \text{ MeV}, f_{B_s} = 243 \pm 11 \text{ MeV}.$

 $f_{B_d} = 190 \pm 13 \text{ MeV}$

Talk at f_B and B_B 5:30 pm Gamiz et al. [HPQCD], arXiv:0902.1815 \sim Recent 2+1 calculation of neutral *B* mixing: $f_{B_s} \sqrt{B_{B_s}} = 266 \pm 18 \text{ MeV}$ $f_{B_s} = 231 \pm 15 \text{ MeV}$ $f_{B_d} \sqrt{B_{B_d}} = 216 \pm 15 \text{ MeV}$ $f_{B_d} = 190 \pm 13 \text{ MeV}$ $\xi = 1.258 \pm 0.033$

 Decay constants 1σ lower than in hep-lat/0507015, stemming from 2nd, finer lattice spacing.

✓ Fermilab/MILC (Lat'08 preliminary):
 $f_B = 195 \pm 11 \text{ MeV}, f_{B_s} = 243 \pm 11 \text{ MeV}.$

 B_K

Note on $n_f = 2$

- This means that strange sea quarks are omitted.
- Sometimes it makes no difference; sometimes it can change results by 5% or so.
- Sometimes an error is assigned; sometimes not.
- Several authors in the latter camp advise us to "interpret results as $n_f = 2$."

Flavor&LHC

Terascale Models

- The past 25 years of models have been guided by aesthetics:
 - hierarchy and fine-tuning problems;
 - technicolor, supersymmetry, extra dimensions.
- The next 25 years of models will, presumably, be guided by pragmatism:
 - new particles are seen: how do they couple?

Paradigm of studies: take a model off the shelf; study it; ask whether it could be observed.

 Paradigm of experiments: observe & measure phenomena; study them; build simple *ad hoc* models.

 I'll be astonished if an off-the-shelf model can be matched up to observation.

New Physics & Flavor

- Given a non-Standard particle's coupling to Standard matter, you will want to know if there are related flavor-changing interactions.
- Calculate how it contributes to decays and neutralmeson mixing.
- Expect trouble: a generic TeV particle leads to contributions that are much too big:

the "new-physics flavor problem."

The new-physics flavor problem stems from the SM's many suppression factors:

 $\sim \alpha_{\text{EW}}$, CKM, $(m_q/m_W)^2$, loops, GIM,

 Particles of mass ~1 TeV must be just about as suppressed.

Need mass of ~10⁴ TeV to get away with generic coupling.

HINTS http://belle.kek.jp/hints09/

Several "hints," effects of 2 or more have appeared in the flavor sector, e.g.:

• $(\Delta\Gamma_{Bs}, \phi_s)$ [DØ, CDF; UTFit];

• $K\pi CP$ asymmetries [Hou: 4th gen?];

sin 2φ₁ tension [Lunghi, Soni];

✓ V_{ub} tension [inc vs. exc: V+A currents?];

∼ leptonic decays $B \rightarrow \tau v$ and $D_s \rightarrow lv$ $(l = \tau, \mu)$.

Leptonic Decays

 \sim Proceed by annihilation into *W*.

 Branching fraction (here D_s): $B(D_{s} \rightarrow \ell \nu) = \frac{m_{D_{s}} \tau_{D_{s}}}{8\pi} f_{D_{s}}^{2} |G_{F} V_{cs}^{*} m_{\ell}|^{2} \left(1 - \frac{m_{\ell}^{2}}{m_{D_{s}}^{2}}\right)^{2}$ Experiments usually quote decay constant f: $\langle 0|\bar{s}\gamma_{\mu}\gamma_{5}c|D_{s}\rangle = if_{D_{s}}p_{\mu}.$ or V_{CKM}f.

$B \rightarrow \tau \nu$

- → Assuming the SM, $|V_{ub}|f_B = 0.925 \pm 0.101$ MeV.
- With $|V_{ub}|$ from the exclusive method, this implies $f_B = 274 \pm 42$ MeV.
- ∼ Rather higher than LQCD avg: $f_B = 193 \pm 8$ MeV.
- What could explain the discrepancy?
- A non-Standard charged, recently observed (in the theoretical literature).

A graphical view:

a 1.9σ discrepancy.

Exclusion Plot

- Charged Higgs: multiply BR with [1-tan²β (m_B/m_H)²]²
- Exclude part of $(\tan\beta, m_H)$ plane.
- Non-standard H[±] overwhelms W[±].

Alas, this doesn't make any sense (to me).

The interference in Model II is destructive, so this model is *not* a natural candidate.

If the "observation" of the particle had been in an experiment, it would not come equipped with a full-blown model.

You would (wouldn't you?) look for a way to couple H[±] that isn't so extreme.

$D_s \rightarrow l\nu$

- A simple matrix element $\langle 0|\bar{s}\gamma_{\mu}\gamma_{5}c|D_{s}\rangle = if_{D_{s}}p_{\mu}$.
- No light valence quarks.
- Counting experiment at CLEO, B factories.
- New physics thought to be *very unlikely*.

And then something funny happened (end 2007)...

a 3.8 σ discrepancy, or $2.7\sigma \oplus 2.9\sigma$.

Updates from FPCP (CLEO) and Lat'08 ...

a 3.6 σ discrepancy, or 2.9 $\sigma \oplus 2.2\sigma$.

With CLEO's papers of January 12, 2009

a 3.0 σ discrepancy, or $2.5\sigma \oplus 1.9\sigma$.

A Puzzle

- Experimental errors?
- Radiative corrections?
- Sector CKM?
- ✤ Lattice QCD?

- Unlikely: stats limited.
- → No: 1–2%
- → No: need $|V_{cs}| > 1.1$.
- Unlikely.

 \sim To mediate $D_s \rightarrow l\nu$ we need

$$\mathcal{L}_{\text{eff}} = \frac{C_A^{\ell}}{M^2} \left(\bar{s} \gamma_{\mu} \gamma_5 c \right) \left(\bar{v}_L \gamma^{\mu} \ell_L \right) + \frac{C_P^{\ell}}{M^2} \left(\bar{s} \gamma_5 c \right) \left(\bar{v}_L \ell_R \right) + \text{H.c.}$$

✤ In rate, replace

$$G_F V_{cs}^* m_\ell \to G_F V_{cs}^* m_\ell + \frac{1}{\sqrt{2}M^2} \left(C_A^\ell m_\ell + \frac{C_P^\ell m_{D_s}^2}{m_c + m_s} \right)$$

because $\langle 0|\bar{s}\gamma_5 c|D_s\rangle = -if_{D_s}m_{D_s}^2(m_c+m_s)^{-1}$

New Particles

The effective interactions can be induced by heavy particles of charge +1, +2/3, -1/3.

Charged Higgs, new W'; leptoquarks.

W'

- \sim Contributes only to C_A .
- New gauge symmetry, but couplings to left-handed leptons constrained by other data.
- → If W and W' mix, electroweak data imply it's too weak to affect $D_s \rightarrow l\nu$.
- Seems unlikely, barring contrived, finely tuned scenarios.

Charged Higgs

Multi-Higgs models include Yukawa terms y_c c̄_Rs_LH⁺ + y_sc̄_Ls_RH⁺ + y_ℓv̄^ℓ_Lℓ_RH⁺ + H.c., (mass-eigenstate basis) leading to

$$C_P^\ell = rac{1}{2} \left(y_c^* - y_s^*
ight) y_\ell, \qquad M = M_{H^\pm}$$

 $\propto V_{cs}^* (m_c - m_s an^2 eta) m_\ell \quad \text{in Model II}$

 \sim Note that C_P can have either sign.

But consider a two-Higgs-doublet model

• one for c, u, l, with VEV 2 GeV or so;

• other for *d*, *s*, *b*, *t*, VEV 245 GeV.

No FCNC; CKM suppression.

Need to look at one-loop FCNCs.

 \sim Naturally has same-sized increase for μ & τ.

◆ This model predicts a similarly-sized deviation in *D* → *l*v, so it is now disfavored:

Leptoquarks

- Solve Color triplet, scalar doublet with Y = +7/6 has a component with charge +2/3.
- Dobrescu and Fox use this in a new theory of fermion masses [arXiv:0805.0822].
- Solution Leads to $C_A = 0$ and C_P of any phase, and no connection between μ & τ.
- \sim LFV $\tau \rightarrow \mu s \bar{s}$ disfavors this.

• LFV $\tau \rightarrow \mu s \bar{s}$ also disfavors leptoquarks of • J = 1, (3, 3, +2/3) and (3, 1, +2/3)

∽ J = 0, (3, 3, -1/3)

Sut J = 0, (3, 1, −1/3) seems promising:
$$\kappa_{2l}(\bar{c}_L l_L^c - \bar{s}_L v_L^{lc})\tilde{d} + \kappa'_{2l} \bar{c}_R l_R^c \tilde{d} + \text{H.c.}$$
(an interaction in *R*-violating SUSY), with
$$C_A^l = \frac{1}{4} |\kappa_{2l}|^2, \qquad C_P^l = \frac{1}{4} \kappa_{2l} \kappa'_{2l}^*.$$

→ If $|\kappa'_l/\kappa_l| \ll m_l m_c/m_{D_s}^2$, independent of lepton, or if $\kappa'_l \propto m_l$, then the interference is constructive and creates the same-sized deviation for $\mu\nu$ and $\tau\nu$.

LHC

The generic bounds on mass/coupling:

 $\frac{M}{(\operatorname{Re} C_{A,P}^{\ell})^{1/2}} \lesssim \begin{cases} 710 \text{ GeV}, \quad 920 \text{ GeV for } \ell = \tau \\ 850 \text{ GeV}, \quad 4500 \text{ GeV for } \ell = \mu \end{cases}$

any non-Standard explanation of the effect is observable at the LHC.

• Leptoquarks: $gg \to \tilde{d}\bar{d} \to \ell_1^+ \ell_2^- j_c j_c$.

Outlook

- We've all been waiting, since grad school, for the LHC to change our lives.
- It should also change the way we think about flavor physics:
 - LHC particles are in the loops, perhaps even in the trees, of flavor transitions.
- Likewise, deviations in flavor transitions can point the way to LHC searches.

- It would have been nice to have a high-energy lepton collider in conversation with LHC.
- Barring that, flavor experiments are willing and useful alternatives.
- Need to know SM flavor: lattice QCD will be crucial.
- It may take 20 years to sort it out.