Pulsars as a Source of the WMAP Haze

Kathryn Zurek Fermilab

Kaplinghat, Phalen, KMZ, arXiv: 0905.0487

DN model building fury

Excess electrons from astrophysical objects

* Produced at sources

* Diffuse outwards, lose energy

* Radiate in magnetic field

* WMAP Haze?

Gamma Rays (Inverse Compton on starlight) Synchrotron (magnetic field)

The WMAP Haze

χ

W⁺

W-

* Is it there?

- * Lots of background synchrotron radiation, from dust
- * What causes it?
 * DM annihilation to charged byproducts which radiate in ^x magnetic field?

Finkbeiner Finkbeiner and Pobler 2007

The WMAP Haze from DM

* Magic thermal annihilation cross-section $\Omega_c h^2 = 0.114 \pm 0.003$

 $\Omega h^2 \approx \frac{2 \times 10^{-10} {\rm GeV^{-2}}}{\langle \sigma v \rangle}$

* Gets right relic $\sigma v \approx \frac{g^4}{1 \text{ TeV}^2} \approx 3 \times 10^{-26} \frac{\text{cm}^3}{\text{s}}$ density

* But annihilation cross-section quite dialable

- Pensity profile, Magnetic field profile, ratio of energy lost by inverse Compton to synchrotron
- * Several orders of magnitude in cross-section

- * Total flux of synchrotron
- * Angular profile from galactic center
- * Frequency band dependence $\frac{dn_e}{dE_e} \propto E_e^{-\alpha}$
- * Morphology -approximately spherical

- * Total flux of synchrotron
- * Angular profile from galactic center
- * Frequency band dependence
- * Morphology --approximately spherical

* Pulsar contribution

- * Total flux of synchrotron
- * Angular profile from galactic center 🗸
- * Frequency band dependence
- * Morphology -approximately spherical

$$Q_0 \left(\frac{E_e}{GeV}\right)^{-\alpha} e^{-E_e/E_{cut}} E_e dE_e = W_0.$$

$$B(r, z) = B_0 e^{-r/r_0 - |z|/z_0}$$

$$Q(E_e) = Q_0 f_e \left(\frac{E_e}{GeV}\right)^{-\alpha} e^{-E_e/E_{cut}}$$

- * Total flux of synchrotron \checkmark $B(r,z) = B_0 e^{-r/r_0 - |z|/z_0}$
- * Angular profile from galactic center
- * Frequency band dependence
- * Morphology --approximately spherical

Not published for fits

Courtesy of

G. Pobler

Not published

for fits

Roughly

spherical?

- * Total flux of synchrotron \checkmark $B(r,z) = B_0 e^{-r/r_0 - |z|/z_0} \rightarrow B(r,z) = B_0 e^{-r/r'_0 - |z|/z_0} + B_1$ $r'_0 << r_0$
- * Angular profile from galactic center
- * Frequency band dependence
- * Morphology --approximately spherical

- Pulsars are a good possible source of the positron excesses observed by PAMELA and Fermi
- * The electron flux and energy distribution from pulsar production well produces Haze flux and spectrum
- Morphology needs to be further studied; subject to many astrophysical uncertainties such as B-field and pulsar distribution