Normalizing VV at the LHC

J.Campbell, E.Castaneda, Y.Fang, N.Kauer B.Mellado and Sau Lan Wu

This work was supported in part by the DOE under Task TeV of contract DE-FG03-96-ER40956 PHENO2009, UW Madison, 05/12/09

Overview

□ Introduction

Relevance of VV at LHC

□ Normalizing VV with Z^(*)

Tools

□ Inclusive rates

ZZ production

ZW, WW production

Dependence on pp center of mass energy

□ Jet veto survival probability

WW production

ZW production

Outlook and conclusions

VV at the LHC

- VV (V=Z,W) is a major contributor to NL+MET and a background for a number of searches ranging from Higgs searches to SUSY and models beyond the SM
 - **Attractive NL+MET signatures with first data**
 - **WW** gives a large rate of 2L+MET
 - With a jet veto it becomes the leading background for H->WW searches
 - **ZW gives 3L+MET**
 - With a jet veto it becomes the leading background to gaugino production
 - **ZZ** is the leading 4L production mechanism
 - Gives MET when τ present or instrumental MET

Normalizing VV with Z^(*)

- Strong similarities of diagrams since dominant cross-section comes from qq->V(V) via EW couplings
- □ Ratios VV/V expected to reduce pdf and a significant portion of the scale uncertainty
 - This is an asset especially at the very beginning of data taking when global pdf fits will not be available

$$\begin{array}{ll} \mbox{Prediction} & \mbox{Theory} & \mbox{Experimental} \\ N(VV) = \left(\frac{\sigma(pp \rightarrow VV)}{\sigma(pp \rightarrow Z^{(*)})} \right)_{Th} & \mbox{Charge constraints} & \mbox{Observed} \\ \cdot \epsilon(ll \rightarrow Nl) \cdot N_{Obs}(Z^{(*)}) \end{array}$$

Abdullin et al. in hep-ph/0604120 computed the ratio ZZ/Z to NLO

Ratio ZZ(WW)/Z^(*)

The production of ZZ and WW is enhanced by large contributions from gg->VV with gluons in the initial state

□ Formally a part of the NNLO contribution, but enhanced due to the large gluon flux

γγ* Z/γ*

NLO

Including decays into leptons

Tools

□ For qq->Z^(*) and qq->ZZ use MCFM v5.3 with bug fixes provided by John Campbell

Two independent analyses with independent MC samples. Cross-checks with Pythia

• Foreseeing additional check with Sherpa

- For gg->ZZ,WW use gg2ZZ, gg2WW. The numbers of the nominal cross-sections and the scale error uncertainties made by Nikolas Kauer
 - Evaluating with Pavel Nadolski (Resbos) and the K factor for gg->\gamma\gamma for M_{gg}~M_ZZ
- □ Studies with PYTHIA, ALPGEN and MC@NLO

Event selection & Settings

- The analysis is done at the "parton level". The theoretical errors are decoupled from the experimental errors
- \Box These studies are only for M_{zz} >2 M_z
 - **□** Fur (two) leptons with $P_T > 20$ GeV, $|\eta_1| < 2.5$
 - □ Requirement of 71<M_{II}<111 GeV on lepton pairs □ MET>20 GeV
 - $\Box \triangle R_{II} > 0.2 \text{ and } \triangle R_{II} > 0.7$
 - EW settings as default in MCFM taken by gg2ZZ, gg2WW
 - □ Set scales to M_v for both single and double V production

Nominal Values of ZZ/Z*

Ratios are constructed such that the invariant mass of Z* and ZZ are in the same bin

- □ Contribution from gg->ZZ increases sigma by ~13%
- **Ratio depends weakly with Mass (nice surprise!)**
 - Need to understand better behavior at very large masses

Mass Range	$\sigma_{q\overline{q} ightarrow Z^{*}}^{NLO}$	$\sigma_{q \overline{q} ightarrow ZZ}^{NLO}$	$\sigma^{LO}_{gg ightarrow ZZ}$	$\frac{\sigma_{ZZ}}{\sigma_{Z^*}} \times 10^3$
200 - 250	1773.7	7.99	1.182	5.17
250 - 300	753.2	3.65	0.530	5.54
300 - 350	372.4	1.86	0.246	5.66
350 - 400	205.7	1.07	0.131	5.83
400 - 450	121.0	0.64	0.082	5.94
450 - 500	76.0	0.40	0.055	6.01
500 - 750	143.9	0.74	0.114	5.92
750 - 1000	27.4	0.16	0.033	6.88

Cross-sections in fb

Scale Errors of ZZ/Z*

□ Treat qq->ZZ and gg->ZZ independently

Get maximum deviation by changing renormalization and factorization scales in opposite directions

Mass Range	$\sigma_{q \overline{q} ightarrow Z^{*}}^{NLO}$		$\sigma_{q \overline{q}}^{N}$	$\sigma_{q \overline{q} ightarrow ZZ}^{NLO}$		$\stackrel{O}{\rightarrow}ZZ$	$\frac{\sigma_{ZZ}}{\sigma_{Z^*}} \times 10^3$	
200 - 250	1858.8	4.8	8.34	4.3	1.92	62.0	5.52	6.6
	1586.8	-10.5	7.14	-10.6	0.75	-36.4	4.98	-3.8
250 - 300	792.0	5.2	3.86	5.9	0.83	57.3	5.93	6.9
	683.8	-9.2	3.32	-9.0	0.35	-33.9	5.36	-3.3
300 - 350	390.5	4.9	1.94	4.2	0.38	53.6	5.94	4.9
	340.7	-8.5	1.70	-8.5	0.17	-31.5	5.50	-2.9
350 - 400	214.7	4.4	1.10	3.3	0.20	49.3	6.05	3.8
	195.3	-5.0	0.96	-10.0	0.09	-29.8	5.40	-7.5
400 - 450	125.8	4.0	0.67	5.8	0.12	46.0	6.31	6.2
	114.8	-5.1	0.60	-6.4	0.06	-28.5	5.70	-4.1
450 - 500	79.5	4.5	0.43	6.5	0.08	44.3	6.38	6.3
	72.4	-4.8	0.38	-6.0	0.04	-26.7	5.78	-3.8
500 - 750	147.6	2.6	0.78	5.9	0.16	40.9	6.39	7.8
	140.4	-2.5	0.70	-4.8	0.09	-22.0	5.64	-4.7
750 - 1000	28.1	2.6	0.16	2.0	0.04	30.1	7.17	4.2
	28.2	2.9	0.15	-4.9	0.03	-17.8	6.21	-9.8

Change scale by *4, /4

Cross-sections in fb

Scale Errors of ZZ/Z*

Multiply the contribution of gg->ZZ by a factor of 2 (potential QCD NLO K factor) but keep the relative errors at the LO level

Mass Range	$\sigma_{q \bar{q} ightarrow Z^{*}}^{NLO}$		$\sigma_{q\bar{q}}^N$	$\sigma_{q ar q ightarrow ZZ}^{NLO}$		$O \rightarrow ZZ$	$\frac{\sigma_{ZZ}}{\sigma_{Z^*}}$	$\times 10^{3}$
200 - 250	1858.8	4.8	8.34	4.3	3.83	62.0	6.55	12.1
	1586.8	-10.5	7.14	-10.6	1.50	-36.4	5.45	-6.7
250 - 300	792.0	5.2	3.86	5.9	1.67	57.3	6.98	11.7
	683.8	-9.2	3.32	-9.0	0.70	-33.9	5.88	-6.0
300 - 350	390.5	4.9	1.94	4.2	0.76	53.6	6.91	9.2
	340.7	-8.5	1.70	-8.5	0.34	-31.5	5.99	-5.3
350 - 400	214.7	4.4	1.10	3.3	0.39	49.3	6.97	7.7
	195.3	-5.0	0.96	-10.0	0.18	-29.8	5.87	-9.3
400 - 450	125.8	4.0	0.67	5.8	0.24	46.0	7.26	9.7
	114.8	-5.1	0.60	-6.4	0.12	-28.5	6.22	-6.2
450 - 500	79.5	4.5	0.43	6.5	0.16	44.3	7.37	9.7
	72.4	-4.8	0.38	-6.0	0.08	-26.7	6.33	-5.9
500 - 750	147.6	2.6	0.78	5.9	0.32	40.9	7.47	11.3
	140.4	-2.5	0.70	-4.8	0.18	-22.0	6.27	-6.5
750 - 1000	28.1	2.6	0.16	2.0	0.08	30.1	8.68	7.5
	28.2	2.9	0.15	-4.9	0.05	-17.8	7.16	-11.3

Cross-sections in fb

The Ratio ZZ/Z^{*} seems to be flat as a function of \sqrt{s} and different mass ranges

The ratio ZZ/Z is less flat

\sqrt{s}	200 - 250	250 - 300	300 - 500	500 - 1000
14	5.17	5.54	5.79	6.08
10	4.98	5.33	5.48	5.61
8	4.92	5.24	5.34	5.53

Flatness of ratio indicates reduction of pdf uncertainties

Ratio WW/Z(*)

□ Scale-related uncertainties arise from changing scales by factors of 4 (*4,/4)

Pick biggest deviation of changing at the same time and in opposite directions

M_{z*} >185 GeV

	$\sigma_{q\overline{q} ightarrow Z}^{NLO}$	$\sigma_{q\overline{q} ightarrow Z^{*}}^{NLO}$	$\sigma_{q\overline{q} ightarrow WW}^{NLO}$	$\sigma^{LO}_{gg ightarrow WW}$	$\frac{\sigma_{WW}}{\sigma_Z} \cdot 10^3$	$\frac{\sigma_{WW}}{\sigma_{Z^*}}$
Nom.	785.3	2256	636.0	31.04	0.85	0.296
Max.	6.2	4.6	11.5	62.1	16.1	9.4
Min.	-15.7	-9.9	-13.4	-36.0	-8.6	-5.3

Same as above after multiplying σ (gg->WW) by two

	$\sigma_{q\overline{q} ightarrow Z}^{NLO}$	$\sigma_{q\overline{q} ightarrow Z^{*}}^{NLO}$	$\sigma_{q\overline{q} ightarrow WW}^{NLO}$	$\sigma^{LO}_{gg ightarrow WW}$	$\frac{\sigma_{WW}}{\sigma_Z} \cdot 10^3$	$\frac{\sigma_{WW}}{\sigma_{Z^*}}$
Nom.	785.3	2256.4	636.0	62.08	0.89	0.309
Max.	6.2	4.6	11.5	62.1	19.2	12.0
Min.	-15.7	-9.9	-13.4	-36.0	-10.6	-6.7

Ratio ZW/Z^(*)

□ Ratio evaluated to NLO

□ For ZW require P_T or leading lepton to be >20 and the two sub-leading, >10 GeV

□\sqrt{s} dependence of ratios evaluated

P —	$\sigma_{q\overline{q}\to ZW}^{NLO}$	M _{z*} >195 GeV					
n - 1	$\overline{\sigma^{NLO}_{q\overline{q}\to Z^{(*)}}}$	$\sigma^{NLO}_{q\overline{q}\to Z^*}$	$\sigma^{NLO}_{q\overline{q} ightarrow ZW}$	$\left rac{\sigma_{ZW}}{\sigma_Z} \cdot 10^3 ight $	$rac{\sigma_{ZW}}{\sigma_{Z^*}}$		
	Nominal	1898.4	92.5	0.118	0.0487		
	Maximum	4.6	12.9	16.0	7.9		
	Minimum	-9.2	-12.0	-11.3	-6.5		

Jet Veto Survival Prob.

- □ In order to suppress top backgrounds a full (|η|<5) jet veto is usually applied</p>
 - □ Define $\epsilon(P_T)$ as a fraction of the events that survive a cut on events with a jet of above a certain P_T threshold in ($|\eta|$ <5)
- Here we address the possibility of predicting the jet veto survival probability of WW and ZW from Z* (Also made studies for ZZ and Z)
- Results cross-checked with Pythia, MC@NLO and ALPGEN
- □ We also evaluate the impact of multiple gluon radiation with Pythia6.2.

Over the studies of the studies o

 $\sqrt{s} = 14 \text{ TeV}$

10.17	(6 (mt)	(*****	e (*****	$\varepsilon(WW)$	c €(WW)
$p_T \mid \text{GeV}$	$\varepsilon(Z^*)$	$\delta \varepsilon(Z^*)$	$\varepsilon(WW)$	$\delta \varepsilon(WW)$	$\frac{\epsilon(Z^*)}{\epsilon(Z^*)}$	$\delta \frac{\epsilon(Z^*)}{\epsilon(Z^*)}$
20	0.67	8.5	0.52	11.9	0.78	5.1
		-13.2		-15.2		-3.2
25	0.72	6.4	0.58	9.6	0.81	4.0
		-9.9		-11.8		-2.9
30	0.76	5.1	0.63	8.3	0.82	3.6
		-7.8		-9.1		-2.1
35	0.79	4.1	0.67	7.4	0.84	3.3
		-6.3		-7.3		-2.1
40	0.82	3.5	0.70	6.6	0.85	3.0
		-5.3		-5.9		-1.9
45	0.84	3.2	0.72	6.0	0.86	2.8
		-4.4		-5.4		-1.8
50	0.86	2.9	0.75	5.5	0.87	2.6
		-3.8		-5.0		-1.8
55	0.87	2.6	0.77	5.1	0.88	2.5
		-3.3		-4.7		-1.7
60	0.88	2.4	0.79	4.7	0.89	2.3
		-2.9		-4.3		-1.6
65	0.89	2.1	0.80	4.3	0.90	2.1
		-2.6		-4.0		-1.4
70	0.90	1.9	0.81	4.1	0.90	2.1
		-2.4		-3.7		-1.3
75	0.91	1.8	0.83	3.7	0.91	1.9
		-2.2		-3.3		-1.1
80	0.92	1.6	0.84	3.4	0.91	1.7
		-2.0		-3.2		-1.1
85	0.93	1.5	0.85	3.1	0.92	1.6
		-1.9		-3.1		-1.2
90	0.93	1.4	0.86	3.0	0.92	1.5
		-1.8		-2.9		-1.1
95	0.94	1.3	0.87	2.7	0.93	1.4
		-1.7		-2.7		-1.1
100	0.94	1.2	0.88	2.6	0.93	1.3
		-1.6		-2.6		-1.1

$p_T [\text{GeV}]$	$\epsilon(Z^*)$	$\delta \varepsilon(Z^*)$	$\varepsilon(WW)$	$\delta \varepsilon(WW)$	$\frac{\epsilon(WW)}{\epsilon(Z^*)}$	$\delta \frac{\epsilon(WW)}{\epsilon(Z^*)}$
20	0.69	8.6	0.58	10.9	0.83	2.1
		-7.2		-13.5		-7.8
25	0.75	6.8	0.63	9.2	0.85	2.2
		-5.5		-10.9		-6.3
30	0.78	5.6	0.68	8.0	0.86	2.2
		-4.3		-9.8		-5.8
35	0.81	4.8	0.71	7.1	0.87	2.1
		-3.7		-9.0		-5.4
40	0.84	4.1	0.74	6.2	0.88	2.0
		-3.3		-8.1		-4.9
45	0.86	3.6	0.76	5.4	0.89	1.7
		-3.0		-7.3		-4.4
50	0.87	3.2	0.79	4.8	0.90	1.6
		-2.7		-6.8		-4.2
55	0.89	2.9	0.80	4.4	0.91	1.5
		-2.4		-6.3		-4.0
60	0.90	2.6	0.82	4.0	0.91	1.4
		-2.3		-6.0		-3.8
65	0.91	2.3	0.83	3.8	0.92	1.4
		-2.1		-5.5		-3.4
70	0.92	2.1	0.85	3.4	0.93	1.2
		-1.9		-5.4		-3.5
75	0.92	2.0	0.86	3.2	0.93	1.2
		-1.8		-5.1		-3.4
80	0.93	1.8	0.87	2.9	0.94	1.1
		-1.7		-4.8		-3.2
85	0.94	1.7	0.88	2.8	0.94	1.1
		-1.6		-4.5		-2.9
90	0.94	1.5	0.89	2.6	0.94	1.0
		-1.5		-4.2		-2.8
95	0.95	1.4	0.90	2.4	0.95	0.9
		-1.3		-4.0		-2.7
100	0.95	1.3	0.90	2.2	0.95	0.9
		-1.3		-3.9		-2.7

 $\sqrt{s} = 14 \text{ TeV}$

$p_T [\text{GeV}]$	$\varepsilon(Z^*)$	$\delta \epsilon(Z^*)$	$\varepsilon(ZW)$	$\delta \epsilon(ZW)$	$\frac{\epsilon(ZW)}{\epsilon(Z^*)}$	$\delta \frac{\epsilon(ZW)}{\epsilon(Z^*)}$
20	0.67	8.5	0.48	13.2	0.71	6.3
		-13.2		-15.3		-7.3
25	0.72	6.4	0.53	11.1	0.73	5.5
		-9.9		-12.2		-6.4
30	0.76	5.1	0.57	9.7	0.75	5.0
		-7.8		-10.8		-5.9
35	0.79	4.1	0.61	8.7	0.76	4.6
		-6.3		-9.9		-5.5
40	0.82	3.5	0.64	7.7	0.78	4.0
		-5.3		-9.2		-5.3
45	0.84	3.2	0.66	7.1	0.79	3.8
		-4.4		-8.5		-5.0
50	0.86	2.9	0.68	6.5	0.80	3.5
		-3.8		-7.8		-4.7
55	0.87	2.6	0.70	6.1	0.81	3.4
		-3.3		-7.5		-4.6
60	0.88	2.4	0.72	5.6	0.82	3.2
		-2.9		-7.0		-4.4
65	0.89	2.1	0.74	5.4	0.83	3.2
		-2.6		-6.6		-4.1
70	0.90	1.9	0.75	5.0	0.83	3.0
		-2.4		-6.3		-4.0
75	0.91	1.8	0.77	4.7	0.84	2.9
		-2.2		-6.1		-4.0
80	0.92	1.6	0.78	4.4	0.85	2.7
		-2.0		-5.8		-3.8
85	0.93	1.5	0.79	4.2	0.86	2.6
		-1.9		-5.6		-3.7
90	0.93	1.4	0.80	4.0	0.86	2.5
		-1.8		-5.2		-3.5
95	0.94	1.3	0.81	3.8	0.87	2.4
		-1.7		-4.9		-3.2
100	0.94	1.2	0.82	3.6	0.87	2.3
		-1.6		-4.6		-3.0

$p_T [\text{GeV}]$	$\varepsilon(Z^*)$	$\delta \varepsilon(Z^*)$	$\varepsilon(ZW)$	$\delta \varepsilon(ZW)$	$\frac{\epsilon(ZW)}{\epsilon(Z^*)}$	$\delta \frac{\epsilon(ZW)}{\epsilon(Z^*)}$
20	0.69	8.6	0.52	16.2	0.75	7.0
		-7.2		-13.9		-8.4
25	0.75	6.8	0.58	13.2	0.77	5.9
		-5.5		-12.1		-7.5
30	0.78	5.6	0.62	11.7	0.79	5.7
		-4.3		-10.5		-6.5
35	0.81	4.8	0.65	10.1	0.80	5.1
		-3.7		-9.4		-5.9
40	0.84	4.1	0.68	8.9	0.81	4.5
		-3.3		-8.9		-5.7
45	0.86	3.6	0.70	8.1	0.82	4.4
		-3.0		-8.2		-5.4
50	0.87	3.2	0.72	7.5	0.83	4.1
		-2.7		-7.6		-5.0
55	0.89	2.9	0.74	6.9	0.84	3.8
		-2.4		-7.1		-4.8
60	0.90	2.6	0.76	6.3	0.85	3.6
		-2.3		-6.7		-4.5
65	0.91	2.3	0.78	5.9	0.86	3.5
		-2.1		-6.3		-4.2
70	0.92	2.1	0.79	5.5	0.86	3.3
		-1.9		-5.9		-4.0
75	0.92	2.0	0.80	5.2	0.87	3.1
		-1.8		-5.5		-3.8
80	0.93	1.8	0.82	4.8	0.88	3.0
		-1.7		-5.2		-3.6
85	0.94	1.7	0.83	4.5	0.88	2.8
		-1.6		-5.0		-3.5
90	0.94	1.5	0.84	4.2	0.89	2.6
		-1.5		-4.8		-3.4
95	0.95	1.4	0.85	4.0	0.89	2.5
		-1.3		-4.5		-3.2
100	0.95	1.3	0.86	3.8	0.90	2.4
		-1.3		-4.2		-3.0

Outlook and Conclusions

- □ The use of Z^(*) events is a powerful sample to normalize VV production
- **Consider ratios of** $\sigma(VV)/\sigma(Z^{(*)})$
 - **Considered inclusive rates**
 - The theoretical error of σ(ZZ,WW)/σ(Z^(*)) has large contribution from the LO uncertainties of the gg->VV process
 - Errors remain at the level of 10%
 - Ratios depend weakly on \sqrt{s} and the mass
 - Also considered σ(ZZ)/σ(WW) for which most of the uncertainty due to gg->VV cancels out
 - **Consider Jet veto survival probability**
 - Errors of ε(WW,ZW)/ε(Z*) stay below 10%

EXTRA SLIDES

MCFM Settings

Paramter	Name	Input Value	Output Value determined by ewscheme				
	$(_inp)$		-1	0	1	2	
G_F	Gf	1.16639×10^{-5}	input	calculated	mput	input	
$\alpha(M_Z)$	aemmz	1/128.89	input	input	calculated	input	
$\sin^2 \theta_w$	XW	0.2312	calculated	input	calculated	input	
M_W	wmass	$80.419~{\rm GeV}$	input	calculated	input	calculated	
M_Z	zmass	$91.188 { m ~GeV}$	input	input	input	calculated	
m_t	mt	$172.5 {\rm GeV}$	calculated	input	input	input	

Parameter	Fortran name	Default value
$m_{ au}$	mtau	$1.777 {\rm GeV}$
$m_{ au}^2$	mtausq	$3.1577 \ { m GeV^2}$
m_c^2	mcsq	$2.25 \ \mathrm{GeV^2}$
m_b^2	mbsq	$17.64 \ { m GeV^2}$
$\Gamma_{ au}$	tauwidth	$2.269 \times 10^{-12} \text{ GeV}$
Γ_W	wwidth	$2.06 { m GeV}$
Γ_Z	zwidth	$2.49 {\rm GeV}$
V_{ud}	Vud	0.975
V_{us}	Vus	0.222
V_{ub}	Vub	0.
V_{cd}	Vcd	0.222
V_{cs}	Vcs	0.975
V_{cb}	Vcb	0.

Ratio WW/ZZ

□ The ratio WW/ZZ will diminish the error due to the gg->VV contribution.

The errors will probably be dominated by the experimental uncertainties

σ_{WW}	$\delta\sigma_{WW}$	σ_{ZZ}	$\delta\sigma_{ZZ}$	$\left rac{\sigma_{ZZ}}{\sigma_{WW}}\cdot 10^2 ight $	$\delta rac{\sigma_{ZZ}}{\sigma_{WW}}$
667.0	13.9	11.51	10.9	1.73	1.6
	-14.4		-13.1		-2.6

□ Results above include gg->WW

\sqrt{s} Dependence of WW/Z(*)

□ Results reported to NLO and

Results were obtained with a dynamic scale

250 250

• (E_T of the weak-boson system)

П

/[m x/] acc

	\sqrt{s} [IeV]	$200 < M_{WW} < 250$	$250 < M_{WW} < 300$	$300 < M_{WW} < 500$	$M_{WW} > 500$
	14	0.20	0.27	0.33	0.391
	12	0.20	0.26	0.33	0.388
[10	0.20	0.26	0.32	0.382
	8	0.19	0.25	0.31	0.385
	6	0.18	0.24	0.30	0.406

. . .

200 200

200

\sqrt{s} Dependence of VV/Z*

Ratios are relatively stable w.r.t. \sqrt{s}

Results to NLO

\sqrt{s} [TeV]	$\left \begin{array}{c} \frac{\sigma(WW)}{\sigma(Z^*)} \right $	$\frac{\sigma(ZW)}{\sigma(Z^*)}$	$\frac{\sigma(ZZ)}{\sigma(Z^*)}$
14	0.280	.0481	.0063
12	0.294	.0473	.0062
10	0.271	.0462	.0062
8	0.265	.0452	.0062
6	0.256	.0435	.0062

Check	$\delta\sigma(Z)$	$\delta\sigma(Z^*)$	$\delta\sigma(ZZ)$	$\delta\sigma(WW)$	$\delta\sigma(ZW)$
1	-1.2	-1.0	-1.2	-1.0	-0.9
2	1.2	1.0	1.2	1.0	0.9
3	-1.3	-1.0	-0.8	-0.8	-0.7
4	1.3	1.0	0.8	0.8	0.7
5	0.0	-0.6	-0.6	-0.6	-0.6
6	-0.1	0.5	0.6	0.5	0.6
7	-0.2	-0.8	-1.1	-0.9	-1.0
8	0.1	0.8	1.1	0.9	0.9
9	-2.1	-1.1	-1.1	-1.0	-0.9
10	2.3	1.1	1.1	1.0	0.8
11	1.2	0.9	0.6	0.7	0.6
12	-1.1	-0.8	-0.6	-0.6	-0.6
13	0.3	0.4	0.4	0.4	0.3
14	-0.3	-0.4	-0.3	-0.3	-0.3
15	-0.6	-0.7	-0.7	-0.6	-0.7
16	0.1	0.3	0.2	0.2	0.3
17	-0.2	0.1	0.4	0.3	0.3
18	-0.2	-0.5	-0.8	-0.6	-0.6
19	1.3	1.8	1.9	1.8	1.7
20	-1.0	-1.7	-1.7	-1.6	-1.6
21	1.3	1.0	0.9	0.9	0.8
22	0.3	-0.6	-0.5	-0.6	-0.6
23	0.7	0.5	0.8	0.6	0.6
24	1.1	0.9	0.9	0.8	0.8
25	0.1	0.2	0.5	0.3	0.3
26	0.2	-0.2	-0.2	-0.2	-0.2
27	-0.8	-0.7	-0.6	-0.6	-0.5
28	-0.8	-0.9	-0.9	-0.9	-0.8
29	0.2	-0.2	-0.2	-0.1	-0.1
30	-2.8	-1.9	-1.8	-1.8	-1.7
31	0.9	0.8	0.9	0.8	0.7
32	1.0	0.7	1.0	0.8	0.8
33	1.1	0.6	0.9	0.7	0.7
34	0.4	0.5	0.8	0.6	0.5
35	-0.8	-0.8	-0.7	-0.7	-0.6
36	-0.9	-0.9	-0.8	-0.8	-0.8
37	-1.0	-1.2	-1.1	-1.1	-1.1
38	0.3	0.3	0.3	0.3	0.3
39	-0.1	-0.4	0.0	-0.2	-0.1
40	0.0	-0.1	0.1	0.0	0.0
Total	3.3	3.1	3.3	3.0	2.8

PDF Uncertainties

Use CTEQ6.1 and evaluate the 40 pdf checks

Results depends weakly on cms energy

Uncertainties in %

\sqrt{s}	$\delta\sigma(Z)$	$\delta\sigma(Z^*)$	$\delta\sigma(ZZ)$	$\delta\sigma(WW)$	$\delta\sigma(ZW)$
14	3.3	3.1	3.3	3.0	2.8
10	3.3	3.2	3.4	3.1	2.9
8	3.4	3.4	3.5	3.2	3.0

Shown errors on cross-sections to NLO

	Check	$\delta \frac{\sigma(ZZ)}{\sigma(Z)}$	$\delta \frac{\sigma(ZZ)}{\sigma(Z^*)}$	$\delta \frac{\sigma(WW)}{\sigma(Z)}$	$\delta \frac{\sigma(WW)}{\sigma(Z^*)}$	$\delta \frac{\sigma(ZW)}{\sigma(Z)}$	$\delta \frac{\sigma(ZW)}{\sigma(Z^*)}$
ľ	1	0.0	-0.3	0.2	-0.1	0.3	0.0
	2	0.0	0.3	-0.2	0.1	-0.3	0.0
	3	0.6	0.2	0.6	0.2	0.7	0.3
	4	-0.5	-0.2	-0.6	-0.2	-0.7	-0.3
	5	-0.6	0.0	-0.6	0.0	-0.7	-0.1
	6	0.6	0.0	0.6	0.0	0.7	0.1
	7	-0.9	-0.3	-0.7	-0.1	-0.8	-0.2
	8	0.9	0.3	0.7	0.1	0.8	0.1
	9	1.0	0.0	1.1	0.1	1.2	0.2
	10	-1.2	0.0	-1.3	-0.1	-1.4	-0.3
	11	-0.6	-0.2	-0.5	-0.2	-0.6	-0.3
	12	0.5	0.3	0.5	0.2	0.5	0.3
	13	0.1	0.0	0.1	0.0	0.0	-0.1
	14	-0.1	0.0	-0.1	0.0	0.0	0.1
	15	-0.1	0.0	0.0	0.1	-0.1	0.0
	16	0.1	-0.1	0.1	-0.1	0.2	0.0
	17	0.6	0.3	0.5	0.1	0.5	0.2
	18	-0.7	-0.4	-0.4	-0.2	-0.4	-0.2
	19	0.6	0.0	0.5	-0.1	0.4	-0.2
	20	-0.7	0.0	-0.6	0.1	-0.6	0.1
	21	-0.4	-0.1	-0.5	-0.1	-0.6	-0.2
	22	-0.8	0.1	-0.8	0.0	-0.9	0.0
	23	0.1	0.3	-0.1	0.1	-0.1	0.1
	24	-0.1	0.1	-0.2	0.0	-0.3	-0.1
	25	0.3	0.3	0.2	0.1	0.2	0.1
	26	-0.4	0.0	-0.4	0.0	-0.4	0.0
	27	0.2	0.1	0.2	0.1	0.3	0.2
	28	0.0	0.1	0.0	0.1	0.0	0.1
	29	-0.4	0.0	-0.3	0.1	-0.3	0.2
	30	1.0	0.1	0.9	0.1	1.0	0.2
	31	0.0	0.2	-0.1	0.0	-0.2	-0.1
	32	0.0	0.3	-0.2	0.1	-0.2	0.1
	33	-0.3	0.3	-0.4	0.1	-0.5	0.1
	34	0.4	0.3	0.2	0.1	0.1	0.0
	35	0.1	0.1	0.2	0.1	0.2	0.1
	36	0.1	0.1	0.1	0.1	0.2	0.2
	37	-0.1	0.2	-0.1	0.1	-0.1	0.1
	38	0.0	0.0	0.0	0.0	0.0	0.0
	39	0.1	0.4	-0.1	0.2	0.0	0.3
	40	0.1	0.2	0.0	0.1	0.0	0.2
	Total	1.4	0.5	1.3	0.3	1.4	0.4

PDF Uncertainties (ratios)

Use CTEQ6.1 and evaluate the 40 pdf checks

Results depends weakly on cms energy

Uncertainties in %

	\sqrt{s}	$\delta \frac{\sigma(ZZ)}{\sigma(Z)}$	$\delta \frac{\sigma(ZZ)}{\sigma(Z^*)}$	$\delta \frac{\sigma(WW)}{\sigma(Z)}$	$\delta \frac{\sigma(WW)}{\sigma(Z^*)}$	$\delta \frac{\sigma(ZW)}{\sigma(Z)}$	$\delta \frac{\sigma(ZW)}{\sigma(Z^*)}$
[14	1.4	0.5	1.3	0.3	1.4	0.4
ſ	10	1.5	0.5	1.4	0.3	1.4	0.5
	8	1.5	0.6	1.4	0.3	1.5	0.6

Shown errors on ratios to NLO

Pdf-related errors of VV are more correlated with Z* and with Z

Pdf errors for gg->WW

- Independent study of pdf errors on gg->WW with various versions of CTEQ
 - □ Obtain an errors of 5-10% to the total crosssection of gg->WW with CTEQ6
 - This is significantly smaller than the scale-driven uncertainties
- We did not investigate the correlations of the pdf errors of the qq,qg initial states with those of the gg initial states and the resulting effect on the ratio
 - **This is homework for the future**

The NLO band does contain the NNLO result for Z,W⁺,W⁻ production Same applies for the gg->H production

\sqrt{s} Dependence of Jet Veto

Results of ϵ shown for P_T=30 GeV

	WW						
\sqrt{s}	$< p_T >$	$< \eta >$	ϵ_{jv}	$< p_T >$	$< \eta >$	ϵ_{jv}	$\frac{\frac{\epsilon_{jv}^{WW}}{\epsilon_{jv}^{Z^*}}}$
14	42.0	0.78	0.63	23.9	0.58	0.76	0.82
10	34.6	0.68	0.68	21.0	0.53	0.78	0.86
8	30.1	0.62	0.71	18.1	0.47	0.81	0.87

\sqrt{s} Dependence of Jet Veto

Values with respect to $\sqrt{s} = 14 \text{ TeV}$

	12	2	10		8		6	
$p_T[\text{GeV}]$	$\varepsilon^{R}(WW)$	$\frac{\varepsilon^R(WW)}{\varepsilon^R(Z^*)}$	$\varepsilon^{R}(WW)$	$rac{arepsilon^R(WW)}{arepsilon^R(Z^*)}$	$\varepsilon^R(WW)$	$\frac{\varepsilon^{R}(WW)}{\varepsilon^{R}(Z^{*})}$	$\varepsilon^{R}(WW)$	$\frac{\varepsilon^R(WW)}{\varepsilon^R(Z^*)}$
20	1.07	1.04	1.10	1.04	1.16	1.08	1.25	1.11
25	1.06	1.03	1.08	1.04	1.14	1.07	1.21	1.09
30	1.05	1.03	1.08	1.04	1.12	1.06	1.18	1.08
35	1.04	1.03	1.06	1.03	1.11	1.06	1.16	1.08
40	1.04	1.03	1.06	1.03	1.10	1.05	1.15	1.07
45	1.04	1.02	1.05	1.03	1.09	1.05	1.13	1.07
50	1.03	1.02	1.05	1.03	1.08	1.04	1.12	1.06
55	1.03	1.02	1.05	1.02	1.08	1.04	1.11	1.06
60	1.02	1.01	1.04	1.02	1.07	1.04	1.10	1.05
65	1.02	1.01	1.04	1.02	1.07	1.04	1.10	1.05
70	1.02	1.01	1.04	1.02	1.06	1.03	1.09	1.05
75	1.01	1.01	1.03	1.02	1.06	1.03	1.09	1.05
80	1.01	1.01	1.03	1.02	1.05	1.03	1.08	1.04
85	1.01	1.01	1.03	1.02	1.05	1.03	1.07	1.04
90	1.01	1.01	1.03	1.02	1.05	1.03	1.07	1.04
95	1.01	1.00	1.03	1.02	1.04	1.03	1.07	1.04
100	1.01	1.00	1.03	1.01	1.04	1.02	1.06	1.04