Jet angular correlation in vector-boson fusion processes at hadron colliders

Kentarou Mawatari (Heidelberg U.)

with Kaoru Hagiwara (KEK), Qiang Li (Karlsruhe U.) arXiv:0905.4314 [hep-ph]

2009.5.12 @ Pheno09

- 2. Helicity formalism and kinematics
- 3. Helicity amplitudes for VBF (=WBF+GF) processes
- 4. Azimuthal correlations between the two jets
 - Higgs boson (J = 0) productions
 - Massive graviton (J = 2) productions
- 5. Summary

Azimuthal correlation between jets in Hjj events

T.Plehn, D.Rainwater, D.Zeppenfeld (2002)

- Azimuthal correlations reflect the tensor structures of the HVV coupling. Why does each tensor structure give such distributions?
- How about the correlation for spin-2 massive gravitons?

Subprocesses for X + 2 jet events

KK gravitons: emitted from each of \bullet and \Box

Due to the *t*-channel propagators, the Xjj events via the VBF processes are dominantly produced when Q_i^2 are small, and hence the initial partons scatter to far forward and backward.

 \implies The large rapidity separation cut, or the VBF cut, can select the VBF diagram among the full diagrams.

The helicity amplitudes for VBF processes

$$\mathcal{M}_{\sigma_{1}\sigma_{3},\sigma_{2}\sigma_{4}}^{\lambda} = J^{\mu_{1}'}(k_{1},k_{3};\sigma_{1},\sigma_{3}) \frac{-g_{\mu_{1}'\mu_{1}} + \frac{q_{1\mu_{1}'}q_{1\mu_{1}}}{m_{V}^{2}}}{q_{1}^{2} - m_{V}^{2}} J^{\mu_{2}'}(k_{2},k_{4};\sigma_{2},\sigma_{4}) \frac{-g_{\mu_{2}'\mu_{2}} + \frac{q_{2\mu_{2}'}q_{2\mu_{2}}}{m_{V}^{2}}}{q_{2}^{2} - m_{V}^{2}} \Gamma_{XVV}^{\mu_{1}\mu_{2}}(q_{1},q_{2};\lambda)^{*}$$

can be expressed by using

completeness relation
$$-g_{\mu'\mu} + \frac{q_{i\mu'}q_{i\mu}}{q_i^2} = \sum_{\lambda_i=\pm,0} (-1)^{\lambda_i+1} \epsilon_{\mu'}(q_i,\lambda_i)^* \epsilon_{\mu}(q_i,\lambda_i)$$

current conservation

$$q_{i\mu}J^{\mu}(k_i, k_{i+2}; \sigma_i, \sigma_{i+2}) = 0$$

as the product of the three helicity amplitudes summed over the polarization of the intermediate vector-bosons:

$$\mathcal{M}_{\sigma_{1}\sigma_{3},\sigma_{2}\sigma_{4}}^{\lambda} = \frac{1}{q_{1}^{2} - m_{V}^{2}} J^{\mu_{1}'}(k_{1},k_{3};\sigma_{1},\sigma_{3}) \sum_{\lambda_{1}=\pm,0}^{\lambda_{1}=\pm,0} (-1)^{\lambda_{1}+1} \epsilon_{\mu_{1}'}(q_{1},\lambda_{1})^{*} \epsilon_{\mu_{1}}(q_{1},\lambda_{1})$$

$$\times \frac{1}{q_{2}^{2} - m_{V}^{2}} J^{\mu_{2}'}(k_{2},k_{4};\sigma_{2},\sigma_{4}) \sum_{\lambda_{2}=\pm,0}^{\lambda_{1}=\pm,0} (-1)^{\lambda_{2}+1} \epsilon_{\mu_{2}'}(q_{2},\lambda_{2})^{*} \epsilon_{\mu_{2}}(q_{2},\lambda_{2})$$

$$\times \Gamma_{XVV}^{\mu_{1}\mu_{2}}(q_{1},q_{2};\lambda)^{*}$$

$$= \frac{1}{(q_{1}^{2} - m_{V}^{2})(q_{2}^{2} - m_{V}^{2})} \sum_{\lambda_{1}=\pm,0} \sum_{\lambda_{2}=\pm,0} \mathcal{J}_{1\sigma_{1}\sigma_{3}}^{\lambda_{1}} \mathcal{J}_{2\sigma_{2}\sigma_{4}}^{\lambda_{2}} \mathcal{M}_{X_{\lambda_{1}\lambda_{2}}}^{\lambda_{1}}$$

$$\mathcal{M}_{X_{\lambda_{1}\lambda_{2}}}^{\lambda_{1}}$$

Breit frame
$$(Q_1 = \sqrt{-q_1^2}, \ 0 < \theta_1 < \pi/2)$$
:
 $q_1^{\mu} = k_1^{\mu} - k_3^{\mu} = (0, \ 0, \ 0, \ Q_1)$
 $k_1^{\mu} = \frac{Q_1}{2\cos\theta_1}(1, \sin\theta_1\cos\phi_1, \sin\theta_1\sin\phi_1, \cos\theta_1)$
 $k_3^{\mu} = \frac{Q_1}{2\cos\theta_1}(1, \sin\theta_1\cos\phi_1, \sin\theta_1\sin\phi_1, -\cos\theta_1)$

II)
$$q_2$$
 Breit frame $(Q_2 = \sqrt{-q_2^2}, \pi/2 < \theta_2 < \pi)$:
 $q_2^{\mu} = k_2^{\mu} - k_4^{\mu} = (0, 0, 0, -Q_2)$
 $k_2^{\mu} = -\frac{Q_2}{2\cos\theta_2}(1, \sin\theta_2\cos\phi_2, \sin\theta_2\sin\phi_2, \cos\theta_2)$
 $k_4^{\mu} = -\frac{Q_2}{2\cos\theta_2}(1, \sin\theta_2\cos\phi_2, \sin\theta_2\sin\phi_2, -\cos\theta_2)$

III) VBF frame (X rest frame):

$$\begin{aligned} q_{1}^{\mu} + q_{2}^{\mu} &= P^{\mu} = q_{1}^{\prime \mu} + q_{2}^{\prime \mu} = (M, 0, 0, 0) \\ q_{1}^{\mu} &= \frac{M}{2} \Big(1 - \frac{Q_{1}^{2} - Q_{2}^{2}}{M^{2}}, 0, 0, \beta \Big); \qquad q_{1}^{\prime \mu} = \frac{M}{2} \Big(1 + \frac{Q_{1}^{\prime 2} - Q_{2}^{\prime 2}}{M^{2}}, \beta^{\prime} \sin \Theta, 0, \beta^{\prime} \cos \Theta \Big) \\ q_{2}^{\mu} &= \frac{M}{2} \Big(1 - \frac{Q_{2}^{2} - Q_{1}^{2}}{M^{2}}, 0, 0, -\beta \Big); \qquad q_{2}^{\prime \mu} = \frac{M}{2} \Big(1 + \frac{Q_{2}^{\prime 2} - Q_{1}^{\prime 2}}{M^{2}}, -\beta^{\prime} \sin \Theta, 0, -\beta^{\prime} \cos \Theta \Big) \end{aligned}$$

 $\mathcal{J}_{i\sigma_{i}\sigma_{i+2}}^{\lambda_{i}} = (-1)^{\lambda_{i}+1} J^{\mu}(k_{i}, k_{i+2}; \sigma_{i}, \sigma_{i+2}) \epsilon_{\mu}(q_{i}, \lambda_{i})^{*}$

• Quark current vectors

$$J_{Vff'}^{\mu}(k_i, k_{i+2}; \sigma_i, \sigma_{i+2}) = g_{\sigma_i}^{Vff'} \, \bar{u}_{f'}(k_{i+2}, \sigma_{i+2}) \, \gamma^{\mu} \, u_f(k_i, \sigma_i)$$

• Gluon current vectors

$$J_{ggg}^{\mu}(k_{i},k_{i+2};\sigma_{i},\sigma_{i+2}) = g_{s}f^{abc} \epsilon_{\alpha}^{b}(k_{i},\sigma_{i}) \epsilon_{\beta}^{c}(k_{i+2},\sigma_{i+2})^{*} \\ \times \left[-g^{\alpha\beta}(k_{i}+k_{i+2})^{\mu} - g^{\beta\mu}(-k_{i+2}+q_{i})^{\alpha} - g^{\mu\alpha}(-q_{i}-k_{i})^{\beta} \right]$$

• Wavefunctions for the *t*-channel vector-bosons

$$\epsilon^{\mu}(q_1,\pm) = rac{1}{\sqrt{2}}(0,\mp 1,-i,0);$$
 $\epsilon^{\mu}(q_2,\pm) = rac{1}{\sqrt{2}}(0,\mp 1,i,0)$
 $\epsilon^{\mu}(q_1,0) = (1,0,0,0);$ $\epsilon^{\mu}(q_2,0) = (-1,0,0,0)$

• $VV \rightarrow X$ fusion amplitudes:

$$\mathcal{M}_{X_{\lambda_1\lambda_2}}^{\lambda} = \epsilon_{\mu}(q_1,\lambda_1) \, \epsilon_{\nu}(q_2,\lambda_2) \, \Gamma_{XVV}^{\mu\nu}(q_1,q_2;\lambda)^*$$

• Effective Lagrangian:

$$\mathcal{L}_{H,A} = -\frac{1}{4} g_{Hgg} H F^a_{\mu\nu} F^{a,\mu\nu} - \frac{1}{4} g_{Agg} A F^a_{\mu\nu} \tilde{F}^{a,\mu\nu}$$
$$\mathcal{L}_G = -\frac{1}{\Lambda} T^{\mu\nu} G_{\mu\nu}$$

• XVV vertex:

X	(λ)	V	${\sf \Gamma}_{XVV}^{\mu u}/g_{XVV}$
H	(0)	W, Z	$g^{\mu u}$
H	(0)	$\gamma, Z/\gamma, g$	$q_1 \cdot q_2 g^{\mu u} - q_2^\mu q_1^ u$
A	(0)	$\gamma, Z/\gamma, g$	$\epsilon^{\mu ulphaeta}q_{1lpha}q_{2eta}$ – –
G	$(\pm 2,\pm 1,0)$	$W\!,Z,\gamma,g$	$\epsilon_{lphaeta}\widehat{\Gamma}^{lphaeta\mu u}_{GVV}$

* $\epsilon^{\alpha\beta}(P,\lambda)$: the polarization tensor; $\widehat{\Gamma}^{\alpha\beta\mu\nu}_{GVV}(q_1,q_2)$: the GVV vertex

		C_{\perp}	P-even	$CP ext{-odd}$
λ	$(\lambda_1\lambda_2)$	H(WBF)	H(loop-induced)	A
0	(±±)	-1	$-\frac{1}{2}(M^2+Q_1^2+Q_2^2)$	$\mp \frac{i}{2}\sqrt{(M^2 + Q_1^2 + Q_2^2)^2 - 4Q_1^2Q_2^2}$
0	(00)	$\frac{M^2 + Q_1^2 + Q_2^2}{2Q_1Q_2}$	$ Q_1Q_2$	0

For $Q_1, Q_2 \ll M$, where the VBF contributions dominant,

- WBF *H*: produced by the longitudinally polarized vector-bosons.
- GF H/A: produced by the transversely polarized vector-bosons.

λ	$(\lambda_1\lambda_2)$	G
±2	$(\pm\mp)$	$-(M^2 + Q_1^2 + Q_2^2)$
± 1	(±0)	$\frac{1}{\sqrt{2}M}Q_2(M^2 - Q_1^2 + Q_2^2)$
± 1	(0干)	$\frac{1}{\sqrt{2}M}Q_1(M^2+Q_1^2-Q_2^2)$
0	$(\pm\pm)$	$\frac{1}{\sqrt{6}M^2} \left[(Q_1^2 - Q_2^2)^2 + M^2 (Q_1^2 + Q_2^2) \right]$
0	(00)	$-\frac{4}{\sqrt{6}}Q_1Q_2$

For $Q_1, Q_2 \ll M$, the $\lambda = \pm 2$ states are dominantly produced through the collisions of the vector-bosons which have the opposite-sign transverse polarization.

Azimuthal correlations for Higgs bosons

The J = 0 VBF amplitudes are the sum of the three amplitudes:

$$\mathcal{M}_{\sigma_{1}\sigma_{3},\sigma_{2}\sigma_{4}}^{\lambda=0} = \frac{1}{(Q_{1}^{2}+m_{V}^{2})(Q_{2}^{2}+m_{V}^{2})} \sum_{\lambda_{1}=\pm,0} \sum_{\lambda_{2}=\pm,0} \mathcal{J}_{1\sigma_{1}\sigma_{3}}^{\lambda_{1}} \mathcal{J}_{2\sigma_{2}\sigma_{4}}^{\lambda_{2}} \mathcal{M}_{X}_{\lambda_{1}\lambda_{2}}^{\lambda=0}$$
$$\sim \hat{\mathcal{J}}_{1\sigma_{1}\sigma_{3}}^{+} \hat{\mathcal{J}}_{2\sigma_{2}\sigma_{4}}^{-} \hat{\mathcal{M}}_{X}_{++}^{0} e^{-i(\phi_{1}-\phi_{2})} + \hat{\mathcal{J}}_{1\sigma_{1}\sigma_{3}}^{0} \hat{\mathcal{J}}_{2\sigma_{2}\sigma_{4}}^{0} \hat{\mathcal{M}}_{X}_{00}^{0}$$
$$+ \hat{\mathcal{J}}_{1\sigma_{1}\sigma_{3}}^{-} \hat{\mathcal{J}}_{2\sigma_{2}\sigma_{4}}^{-} \hat{\mathcal{M}}_{X}_{--}^{0} e^{i(\phi_{1}-\phi_{2})}$$

The squared amplitudes are

$$\sum_{\sigma_{1,\dots,4}} \left| \mathcal{M}_{\sigma_{1}\sigma_{3},\sigma_{2}\sigma_{4}}^{\lambda=0} \right|^{2} = \Sigma_{0} + \Sigma_{1} \cos \Delta \phi + \Sigma_{2} \cos 2\Delta \phi \quad (\Delta \phi \equiv \phi_{1} - \phi_{2})$$

The azimuthal correlation is manifestly expressed by the interference among different helicity states of the intermediate vector-bosons.

The different tensor structures of the XVV couplings give rise to the different azimuthal angle dependences:

 $\begin{array}{ll} H(\mathsf{WBF}): \ \mathcal{M}_{00} \gg \mathcal{M}_{++} = \mathcal{M}_{--} & \Rightarrow & d\widehat{\sigma}/d\Delta\phi \sim \mathsf{constant} \\ H(\mathsf{GF}): & \mathcal{M}_{00} \ll \mathcal{M}_{++} = \mathcal{M}_{--} & \Rightarrow & d\widehat{\sigma}/d\Delta\phi \sim \Sigma_0 + |\Sigma_2|\cos 2\Delta\phi \\ A: & \mathcal{M}_{00} = 0, \ \mathcal{M}_{++} = -\mathcal{M}_{--} \Rightarrow & d\widehat{\sigma}/d\Delta\phi \sim \Sigma_0 - |\Sigma_2|\cos 2\Delta\phi \end{array}$

$\Delta \phi$ distributions for Higgs bosons

 \implies The VBF contributions can reproduce the distributions with the exact matrix elements very well even for the GF processes.

Azimuthal correlations for gravitons

The VBF G production plus its 2-body decay amplitudes are

$$\mathcal{M}_{\sigma_{1,\dots,4};\sigma_{5,6}} = \frac{1}{Q_{1}^{2}Q_{2}^{2}} \sum_{\lambda_{1}} \sum_{\lambda_{2}} \mathcal{J}_{1}_{\sigma_{1}\sigma_{3}}^{\lambda_{1}} \mathcal{J}_{2}_{\sigma_{2}\sigma_{4}}^{\lambda_{2}} \mathcal{M}_{G_{\lambda_{1}\lambda_{2}}}^{\lambda=\lambda_{1}-\lambda_{2}} \frac{d_{\lambda,\lambda'}^{2}(\Theta)}{P^{2} - M^{2} + iM\Gamma} \mathcal{M}_{G\sigma_{5}\sigma_{6}}^{\prime} - \sigma_{6}$$

$$\sim \quad \hat{\mathcal{J}}_{1}_{\sigma_{1}\sigma_{3}}^{+} \hat{\mathcal{J}}_{2}_{\sigma_{2}\sigma_{4}}^{-} \hat{\mathcal{M}}_{G_{+-}}^{+2} e^{-i(\phi_{1}+\phi_{2})} d_{+2,\lambda'}^{2}(\Theta)$$

$$+ \quad \hat{\mathcal{J}}_{1}_{\sigma_{1}\sigma_{3}}^{-} \hat{\mathcal{J}}_{2}_{\sigma_{2}\sigma_{4}}^{+} \hat{\mathcal{M}}_{G_{-+}}^{-2} e^{i(\phi_{1}+\phi_{2})} d_{-2,\lambda'}^{2}(\Theta)$$

The squared amplitudes are

$$\sum_{\sigma_{1,\dots,4}} \left| \mathcal{M}_{\sigma_{1,\dots,4};\sigma_{5,6}} \right|^2 = \Sigma_0 + \Sigma_1 \cos 2\Phi \quad (\Phi \equiv \phi_1 + \phi_2)$$

where

$$\Sigma_{0} \propto \left(d_{+2,\lambda'}^{2}(\Theta)\right)^{2} + \left(d_{-2,\lambda'}^{2}(\Theta)\right)^{2} = \begin{cases} \frac{1}{8}(1+6\cos^{2}\Theta+\cos^{4}\Theta) & \text{for } \lambda'=\pm 2\\ \frac{1}{2}(1-\cos^{4}\Theta) & \text{for } \lambda'=\pm 1\\ \frac{3}{4}\sin^{4}\Theta & \text{for } \lambda'=0 \end{cases}$$
$$\Sigma_{1} \propto 2 d_{+2,\lambda'}^{2}(\Theta) d_{-2,\lambda'}^{2}(\Theta) = \begin{cases} +\frac{1}{8}\sin^{4}\Theta & \text{for } \lambda'=\pm 2\\ -\frac{1}{2}\sin^{4}\Theta & \text{for } \lambda'=\pm 1\\ +\frac{3}{4}\sin^{4}\Theta & \text{for } \lambda'=0 \end{cases}$$

 \implies The azimuthal Φ correlations depend on Θ and λ' .

$(\phi_1 - \phi_2)$ distributions for gravitons

"HELAS and MadGraph/MadEvent with spin-2 particles" K.Hagiwara, J.Kanzaki, Q.Li, KM, EPJC(2008) (The code is available at *http://madgraph.kek.jp/KEK/*.)

$(\phi_1 + \phi_2)$ distributions for gravitons

The Θ and λ' dependent azimuthal Φ correlations !

- We have studied
 - heavy particle (H/A and G) productions in association with two jets via VBF (=WBF+GF) processes at the LHC.
 - (their decays into 4 leptons/jets via a vector-boson pair.)
- We showed
 - the helicity amplitudes explicitly for the VBF subprocesses.
 - the VBF amplitudes can reproduce the exact matrix elements by imposing the selection (large rapidity separation) cuts.
 - non-trivial azimuthal correlations of the jets are manifestly expressed as the quantum interference among different helicity states of the intermediate vector-bosons.
- These correlations reflect the spin and *CP* nature of the produced heavy particles.