# Multi-parameter approach to *R*-parity violating SUSY couplings

Enrico Maria Sessolo

Dept. of Physics and Astronomy The University of Kansas

> PHENO 2009 05/11/2009

E. M. Sessolo, F. Tahir and D. W. McKay, arXiv: 0903.0118 [hep-ph]

# R-parity in SUSY

In MSSM super-potential terms that violate B, L are allowed,

$$\hat{f}_T = \lambda_{ijk} \hat{L}_i \hat{L}_j \hat{E}_k^c + \lambda'_{ijk} \hat{L}_i \hat{Q}_j \hat{D}_k^c + \lambda''_{ijk} \hat{U}_i^c \hat{D}_j^c \hat{D}_k^c$$

$$\hat{f}_B = \mu_i' \hat{L}_i \hat{H}_u.$$

 $SU(2) \rightarrow \lambda$  antisymmetric in ij.  $SU(3) \rightarrow \lambda''$  antisymmetric in jk. In order to have stable LSP one imposes *R*-parity conservation,

$$R = (-1)^{3(B-L)-2S}.$$

- Standard model particles  $\rightarrow R = 1$
- Superpartners  $\rightarrow R = -1$ 
  - Use experimental uncertainties to place bounds on

$$r_{ijk}(\tilde{f}_i) = \sum_i |\lambda_{ijk}|^2 / (4\sqrt{2}G_F m_{\tilde{f}_i}^2)$$

# Our approach

- In the literature assumption that a single coupling dominates the *R*-parity contribution to a process (SCD)
- We adopt "multi-parameter" approach to explore new regions of parameter space
- Reduce the degeneracies by considering many experiments together
- Adopt new PDG2008 data
- Consider low energy process with SM particles in initial and final states.

## Furthermore,

- $\lambda_{ijk}'' = 0$ , avoids proton decay
- Mass basis for the SU(2) doublets

• 
$$\mu' = 0$$

## An example: Muon and tau decays



Let us consider the two following ratios:

$$R_{\tau\mu} = \frac{\Gamma(\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau)}{\Gamma(\mu^- \to e^- \bar{\nu}_e \nu_\mu)} = R_{\tau\mu}^{SM} \left\{ 1 + 2 \left[ r_{23k}(\tilde{e}_{Rk}) - r_{12k}(\tilde{e}_{Rk}) \right] \right\}$$

$$R_{\tau} = \frac{\Gamma(\tau^{-} \to e^{-} \bar{\nu}_{e} \nu_{\tau})}{\Gamma(\tau^{-} \to \mu^{-} \bar{\nu}_{\mu} \nu_{\tau})} = R_{\tau}^{SM} \left\{ 1 + 2 \left[ r_{13k}(\tilde{e}_{Rk}) - r_{23k}(\tilde{e}_{Rk}) \right] \right\}$$

## Muon and tau decays



SCD bounds from  $R_{\tau\mu}$  visible on the axes of Fig. (a):

- $|\lambda_{23k}| \le 0.063 \ (m_{\tilde{e}_{Rk}}/100 \text{ GeV}), \ |\lambda_{12k}| \le 0.045 \ (\tilde{e}_{Rk}).$ SCD bounds from  $R_{\tau}$ :
  - $|\lambda_{23k}| \le 0.051 \; (\tilde{e}_{Rk}), \; |\lambda_{13k}| \le 0.048 \; (\tilde{e}_{Rk}).$

## Muon and tau decays



- $G_F$  measured in muon decay  $\Rightarrow$ Lifetime gives bound on  $|\lambda_{12k}| \le 0.037 \; (\tilde{e}_{Rk})$
- Combine this process with  $R_{\tau\mu}$ ,  $R_{\tau} \Rightarrow 3D$  plot (Fig. b) The bulged area is the  $2\sigma$  allowed region

#### Muon and tau decays



Combined 2σ bound correlated parameters:
 (The k-indices in Fig. (b) are free to take any value or the sum)

 $|\lambda_{23k}| \le 0.066 \; ( ilde{e}_{Rk}) \;$  SCD: 0.051

 $|\lambda_{13k}| \leq 0.071 \; ( ilde{e}_{Rk})$  SCD: 0.048

#### List of processes we consider

## Leptonic cases:

- Universality in muon and tau decay (previous case)
- $\nu_{\mu} e (\bar{\nu}_{\mu} e)$  scattering
- $\nu_e e (\bar{\nu}_e e)$  scattering

Semi-leptonic cases:

- Universality in pion and tau decay
- Unitarity of CKM matrix
- Forward-backward asymmetry in  $e^+e^- \rightarrow c\bar{c}$
- Atomic parity violation
- D-meson semi-leptonic decays

# Summary of bounds

| $\lambda$ (scale)                    | Experiment                 | Corr. $\lambda$                                                         | SCD Bound | Bound( $2\sigma$ ) |
|--------------------------------------|----------------------------|-------------------------------------------------------------------------|-----------|--------------------|
| $\lambda_{12k}(m_{\tilde{e}_{Rk}})$  | $G_{\mu}$                  | none                                                                    | NA        | 0.037              |
| $\lambda_{121}(m_{	ilde{\mu}_L})$    | $\nu_e(\overline{\nu}_e)e$ | $\lambda_{131}(m_{	ilde{	au}_L})$                                       | 0.33      | 0.36               |
| $\lambda_{121}(m_{	ilde{e}_L})$      | $ u_{\mu}e $               | $\lambda_{231}(m_{	ilde{	au}_L})$                                       | 0.138     | 0.118              |
| $\lambda_{13k}(m_{\tilde{e}_{Rk}})$  | $R_{	au}$                  | $\lambda_{12k}(m_{\tilde{e}_{Rk}}), \lambda_{23k}(m_{\tilde{e}_{Rk}})$  | 0.048     | 0.071              |
| $\lambda_{131}(m_{	ilde{	au}_L})$    | $\nu_e(\overline{\nu_e})e$ | $\lambda_{121}(m_{	ilde{\mu}_L})$                                       | 0.33      | 0.36               |
| $\lambda_{23k}(m_{\tilde{e}_{Rk}})$  | $R_{	au}$                  | $\lambda_{12k}(m_{\tilde{e}_{Rk}}),\lambda_{13k}(m_{\tilde{e}_{Rk}})$   | 0.051     | 0.066              |
| $\lambda_{231}(m_{	ilde{	au}_L})$    | $ u_{\mu}e $               | $\lambda_{121}(m_{	ilde{e}_L})$                                         | 0.138     | 0.118              |
| $\lambda'_{11k}(m_{\tilde{d}_{Rk}})$ | CKM <sub>unitary</sub>     | $\lambda_{12k}(m_{\tilde{e}_{Rk}}), \lambda'_{12k}(m_{\tilde{d}_{Rk}})$ | 0.027     | 0.039              |
| $\lambda'_{12k}(m_{\tilde{d}_{Rk}})$ | $A_{FB}(c\overline{c})$    | none                                                                    | NA        | 0.027              |
| $\lambda'_{22k}(m_{\tilde{d}_{Rk}})$ | $D_0$ decay                | $\lambda'_{12k}(m_{\tilde{d}_{Rk}})$                                    | 0.10      | 0.090              |
| $\lambda_{21k}'(m_{\tilde{d}_{Rk}})$ | $(\pi/\tau)_{universal.}$  | $\lambda'_{31k}(m_{\tilde{e}_{Rk}})$                                    | 0.032     | 0.040              |
| $\lambda'_{31k}(m_{\tilde{d}_{Rk}})$ | $(\pi/\tau)_{universal.}$  | $\lambda'_{21k}(m_{\tilde{e}_{Rk}})$                                    | 0.092     | 0.092              |
| $\lambda'_{1j1}(m_{\tilde{u}_{Lj}})$ | APV                        | $\lambda_{12k}(m_{\tilde{e}_{Rk}}), \lambda'_{11k}(m_{\tilde{d}_{Rk}})$ | 0.024     | 0.045              |
| $\lambda'_{32k}(m_{\tilde{d}_{Rk}})$ | $D_s$ decay                | $\lambda'_{22k}(m_{\tilde{d}_{Rk}}),\lambda'_{12k}(m_{\tilde{d}_{Rk}})$ | 0.34      | 0.29               |

# CKM Unitarity (Figs. b, c)





 $d \rightarrow ue\bar{\nu}_e \ (j=1) \mid s \rightarrow ue\bar{\nu}_e \ (j=2) \mid b \rightarrow ue\bar{\nu}_e \ (j=3)$ 

# CKM Unitarity (Figs. b, c)



Imposing the unitarity constraint,

$$\sum_{i=1}^{3} |V_{ud_i}|^2 = 1 - 2r_{12k}(\tilde{e}_{Rk}) + 2r'_{11k}(\tilde{d}_{Rk}) |V_{ud}| + 2\left(\sum_k \frac{|\lambda'_{11k}||\lambda'_{12k}|\cos(\Delta\theta_k^{us})}{4\sqrt{2}G_F m_{\tilde{d}_{Rk}}^2}\right) |V_{us}|$$

# CKM Unitarity (Figs. b, c)



- Dependence on  $\cos(\Delta \theta_k^{us}) \equiv \cos(\theta_{us} + \theta_{12k} \theta_{11k})$  (b) (Here, *k*-index common to *xyz*-axes)
- The FB asymmetry in  $e^-e^+ \rightarrow c\bar{c}$  only involves  $\lambda'_{12k} \leq 0.027 \ (\tilde{d}_{Rk}).$
- Correction to  $G_F$  from  $\mu$ -decay only involves  $\lambda_{12k}$ .
- Combined 2 $\sigma$  gives (c)  $\rightarrow |\lambda'_{11k}| \leq 0.039 \; (\tilde{d}_{Rk})$  SCD: 0.027.

$$u_{\mu} - e$$
 scattering



- CHARM II has extracted  $g_L$ ,  $g_R$  individually from  $\sigma_{tot}(\nu_{\mu}e)$
- Antisymmetry in *i*, *j* allows bounds on individual couplings
- One can use new PDG2008 data for  $g_A$ ,  $g_V$  to get the  $2\sigma$  bound

$$\sqrt{[|\lambda_{121}|(m_{\tilde{e}_L})^{-1}]^2 + [|\lambda_{231}|(m_{\tilde{\tau}_L})^{-1}]^2} \le 0.130$$

 $\nu_e - e (\bar{\nu}_e - e)$  scattering



• LSND:  $\sigma_{tot}$  from flavor-diag elastic  $\nu_e e$  accelerator data  $\sim 10 \text{ MeV}$ 

•  $\sqrt{[|\lambda_{121}|(m_{\tilde{\mu}_L})^{-1}]^2 + [|\lambda_{131}|(m_{\tilde{\tau}_L})^{-1}]^2} \le 0.66$ 

• Combine the previous result with elastic  $\bar{\nu}_e e$  reactor data  $\sim 1$  MeV (Reines, Gurr and Sobel, '76) •  $\sqrt{[|\lambda_{121}|(m_{\tilde{\mu}_L})^{-1}]^2 + [|\lambda_{131}|(m_{\tilde{\tau}_L})^{-1}]^2} \leq 0.38$ 

• Additional resolving power due to term  $\propto m_e g_L g_R$  (low energy)



Previous bound gives at  $1\sigma$ :

 $0.14 \le \sqrt{[|\lambda_{121}|(m_{\tilde{\mu}_L})^{-1}]^2 + [|\lambda_{131}|(m_{\tilde{\tau}_L})^{-1}]^2} \le 0.34$ 



Seek consistency with

•  $G_F$  correction from  $\mu$ -decay,  $|\lambda_{121}|(100 \text{ GeV})/m_{\tilde{e}_R} \leq 0.037$ 



#### And

• au-decay,  $|\lambda_{131}|(100~{\rm GeV})/m_{{\widetilde e}_R} \leq 0.071$ 



We get a relation between sparticle masses! The darkened region is allowed.

## Summary and Conclusions

- Joint analysis of different experiments involving the same subset of couplings can explore new regions of parameter space
- The new 2σ bounds on individual couplings are generally different from those obtained by SCD
- In the  $\bar{\nu}_e e$  case we could extract hierarchical relationships among sfermion masses
- Allowed ranges of parameters were larger by at most factor 2 ⇒ Order of magnitude estimate reliable in SCD