Model Independent Limits on Anomalous Scalar Charged Bosons in Top Quark Decays

Geumbong Yu University of Rochester

Pheno 2009 Symposium University of Wisconsin, Madison May 11-13, 2009

Introduction

Charged Higgs search in top quark decays

- Strategy for charged Higgs search
- CDF II detector at Tevatron
- Event Selection
- Observed dijet mass in 2.2 fb⁻¹ CDF data
- Extracting upper limits on $B(t \rightarrow H^+b)$
- Including Systematic Uncertainty
- Upper limits on $B(t \rightarrow H^+b)$
- Extend search for generic scalar charged boson in top quark decays
 - Motivation
 - Analysis with ud decays
- Summary

Charged Higgs (H[±])

• Two Higgs Doublet Model for electro-weak symmetry breaking beyond the Standard Model

H°, h°, A°, H[±]

- Too small direct production cross section of charged Higgs at Tevatron
 - Smaller than top quark production by a factor of 1000
- Minimal Supersymmetric Standard Model (MSSM) predicts charged Higgs in top quark decays
 - M(H⁺)<M(t)-M(b)</p>
 - Focus on $H^{+} \rightarrow cs$ at low tan β

$$\tan\beta = \frac{V_2}{V_1}, V_1^2 + V_2^2 = (246 \,\text{GeV})^2$$

May 12, 2009

 tan(β)

 Phys. Rev. Lett. 96, 042003 (2006)

 http://www-cdf.fnal.gov/physics/new/top/2005/ljets/charged_higgs/

 higgs/V2/HiggsAnalysis_publicV2.html

Charged Higgs (H[±])

• Two Higgs Doublet Model for electro-weak symmetry breaking beyond the Standard Model

H°, h°, A°, H[±]

- Too small direct production cr section of charged Higgs at Teva
 - Smaller than top quark produce 0.8 by a factor of 1000
- Minimal Supersymmetric Stan Model (MSSM) predicts charged Higgs in top quark decays
 - M(H⁺)<M(t)-M(b)</p>
 - Focus on $H^{\dagger} \rightarrow cs$ at low tan β

$$\tan\beta = \frac{V_2}{V_1}, V_1^2 + V_2^2 = (246 \,\text{GeV})^2$$

Phys. Rev. Lett. 96, 042003 (2006) http://www-cdf.fnal.gov/physics/new/top/2005/ljets/charged_higgs/higgs/V2 /HiggsAnalysis_publicV2.html

M_⊔,=120 GeV

May 12, 2009

Charged Higgs in Top Decays

- Lepton+jets top pair events
 - Best signal-to-background ratio
 - Decays to lepton, neutrino, 4 quarks
- Same final state from W⁺ and H⁺

 $W^{*} \rightarrow qq' \rightarrow jj \ \text{Vs.} \ H^{*} \rightarrow cs \rightarrow jj$

• Search for second mass bump in the di-jet mass spectrum

CDF II detector at Tevatron

- Use 2.2 fb⁻¹ data, acquired by 08/2007
- As of May 1st
 - Delivered 6.6 fb⁻¹
 - Acquired 5.4 fb⁻¹

-Silicon Detector -Central Outer Tracker -Solenoid (1.4T) -EM Calorimeter -HAD Calorimeter -Muon Chamber

Event Selection

Final State Object	Requirement
A lepton (e/μ)	p _T ≥20 GeV/c, η <1
Missing transverse energy	≥20 GeV
Number of Jets	≥4
Jet	E _T ≥20 GeV, η <2
Number of b-jets	≥2

 $e^{-\frac{b}{\overline{b}}}$ W^{-} \overline{t} H^{+} \overline{s} \overline{v} b

p_T: transverse momentum
 E_T: energy transverse to the beam line
 η: pseudo rapidity (longitudinal direction)

- Use the most energetic four jets (leading jets)
- Veto events including
 - Z boson (\rightarrow I⁺I⁻)/two leptons/Cosmic muon/Conversion($\gamma \rightarrow e^+e^-$)

Dijet mass spectrum (2.2 fb⁻¹)

Estimated using Pythia Monte Carlo simulation samples and data

Dijet composition	Fraction (%)
$t\bar{t}$ (assuming $\sigma_{t\bar{t}}$ =6.7 pb)	91.6
Non-tt Events	8.4
W + heavy flavor jets	4.5
W + light flavor jets	1.1
Single Top	1.0
Non-W (QCD)	0.9
Diboson (WW/ZZ/WZ)	0.4
Z + light flavor jets	0.3

Observed 200 tt candidates

Extracting $B(t \rightarrow H^+b)$

- Use maximum binned
 likelihood method
- N_{bkb} (Non-tt
) is constrained
 using Gaussian statistics
- Event composition in dijet mass is estimated using templates :
 - W, H⁺, non-tt distribution
- Maximum LH returns
 - N(W), N(H⁺), N(non-tt)
- Calculate B(t→H⁺b) using N(W) and N(H⁺)

9

Systematic Uncertainty

Systematic Uncertainty

Likelihood shape is smeared out including systematic uncertainty as a Gaussian error 95% integration of the positive branching ratio area \rightarrow Gives an upper limit with 95% C.L.

 $B(t \rightarrow H^+b)$

Upper Limits on $B(t \rightarrow H+(\rightarrow cs)b)$

Observed limits from
 2.2 fb⁻¹ data agree with
 the SM expectation

 SM expected upper limits are estimated from 1000 SM
 pseudoexperiments

M(H⁺)>80 GeV from LEP data

Extending the limits to generic scalar charged boson in top decays

Motivation

- The charged Higgs search is performed independent of any model specific parameters
- Assumptions for charged Higgs (H⁺):
 - Scalar charged boson
 - Narrow width
 - Which is predicted for the light H⁺ in MSSM
 - $H^+ \rightarrow cs 100\%$
- The search is extended to
 - Mass below W boson (down to 60 GeV)
 - Same analysis is performed for another two jets decay mode (ud)

Analysis with ud Decays

phenoog, deumbong ru

CDF Run II Preliminary

- Dijet mass of ud decays is narrower than that of cs decays
- Better mass separation between W and charged boson (\rightarrow ud) results in lower upper limits by ~10%

The upper limits for $c\overline{s}$ decays can be used conservative limits for any generic non-SM scalar charged boson in top quark decays

May 12, 2009

160

Model Independent Upper Limits

For any non-SM scalar charged boson production in top quark decays

Assumptions for a generic charged boson:
Spin-O particle
Hadronic decays
Narrow width

Summary

- The MSSM charged Higgs has been searched in lepton+jets top quark decays
 - This is the first attempt of H⁺ → cs search using fully reconstructed mass
 - No SUSY parameters used
 - In 2.2 fb⁻¹ CDF II data we observe no evidence of the charged Higgs

Based on simulation upper limits on B(t→H⁺b) can be used as model independent limits for anomalous scalar charged boson production in top quark decays
This analysis is about to be submitted to PRL soon

Backup Slides

.

Dijet mass with H⁺ signal

Previous charged Higgs search at CDF

In 193 pb⁻¹ by R. Eusebi

B(t→H+b) < 0.4 @ 95% C.L. for 80 GeV < m(H+) < 160 GeV

Maximum stop mixing scenario

Count excess/deficiency of top quarks in various channels

Recent charged Higgs search at Do

In 1.0 fb⁻¹ by Y. Peters

Count excess/deficiency of top quarks in various channels