W+3 Jet Production at Hadron Colliders:

NLO computations with BlackHat + SHERPA

Fernando Febres Cordero, UCLA

PHENO --- Madison --- May 2009

In collaboration with: C.F. Berger (MIT), Z. Bern (UCLA), L. Dixon (SLAC), D. Forde (SLAC), T. Gleisberg (SLAC), H. Ita (UCLA), D. Kosower (Saclay) and D. Maitre (Durham) arXiv:0803.4180 ; arXiv:0808.0941 ; arXiv:0902.2760

Messages

- 1. NLO QCD corrections necessary for hadron collider physic
 - First quantitative reliable predictions
 - Corrections not always amount to global rescaling: Change of distribution shapes!
- 2. Oncoming Automated NLO Corrections
 - NLO corrections with BlackHat+SHERPA
 - W+n jets (n=1,2,3) at NLO QCD

The Challenges of Hadron Collider Physics

Tevatron: Single Top Production

T. Aaltonen et al. [CDF Collaboration], arXiv:0809.2581

But we should not limit the physics reach of our experiments by restricting them only to "counting" analyses:

For example the matrix element method uses full information of LO matrix elements to pull the signal out of background.

Tevatron: Single Top Production

CDF 5 sigma discovery! D0 5 sigma discovery!

arXiv:0903.0885

arXiv:0903.0850

It should be possible to do better by using NLO matrix elements. The goal is to provide experimenters with necessary theoretical tools for a wide variety of processes.

Comparing tools

T. Aaltonen et al. [CDF Collaboration], arXiv:0711.4044

Scattering processes at hadron colliders: **A multi-layered problem**

taken from Rick Field

(C.F. Berger, Z. Bern, L. Dixon, FFC D. Forde, T. Gleisberg, H. Ita, D. Kosower and D. Maitre)

W+n j (n=1,2,3) at NLO

See talks by:

- Carola F. Berger
- Frank Krauss

NLO Quantum Corrections

one loop amplitudes interfered with the Born real contributions with one extra parton in the final state

BlackHat:

W+2:

Automating the computation of one loop matrix elements

Within AMEGIC++ automates the Catany-Seymour Dipole substraction for real corrections

(T. Gleisberg, F. Krauss, 2007)

(arXiv:0803.4180; arXiv:0808.0941)

More Activity in Automating NLO Computations:

• Real pieces:

- MadDipole Frederix, Gehrmann, Greiner
- Seymour, Tevlin
- Hasegawa, Moch, Uwer
- Virtual pieces:
 - CutTools Ossola, Papadopoulos, Pittau
 - Rocket Ellis, Giele, Kunszt, Melnikov, Zanderighi
 - Lazopoulos
 - Giele and Winter

- ...

...

W+Jets at the Tevatron: CDF Analysis

T. Aaltonen et al. [CDF Collaboration], arXiv:0711.4044, 320 pb^-1

	Cut
Electron Et	20 GeV
Electron eta	1.1
Missing Energy	30 GeV
W Transverse Mass	20 GeV
Jet Et	20 – 25 GeV
Jet eta	2
Delta R	0.4

We employ the SISCone Jet Algorithm

Salam, Soyez arXiv:0704.0292

CTEQ pdfs, and a dynamical factorization/renormalization scale (sqrt(Mw^2+pt_W^2)) for comparison with data

W+n jets: Comparing Rates

number of jets	CDF	NLO
1	53.5 ± 5.6	$57.8^{+4.4}_{-4.0}$
2	6.8 ± 1.1	$7.62^{+0.62}_{-0.86}$
3	0.84 ± 0.24	$0.882(5)^{+0.057}_{-0.138}$

Reduction in Scale Dependence

Number of jets	LO	NLO
1	16%	7%
2	30%	10%
3	42%	12%

W+ jet +X at the Tevatron

W+2 jets + X at the Tevatron

W+3 jets + X at the Tevatron

W+3 Jets at the LHC

PRELIMINARY

	Cut
Electron Et	20 GeV
Electron eta	2.5
Missing Energy	30 GeV
W Transverse Mass	20 GeV
Jet Et	30 GeV
Jet eta	3
Delta R	0.4

 $E_{CM} = 14 \text{ TeV}$

SISCone

LHC total cross section

Jet dR Distributions

Conclusions

- NLO QCD corrections are an important tool for hadron collider analyses: first reliable quantitative predictions
- Automated tools for computing loop quantum corrections are now on the horizon!
- Presented NLO QCD corrections to *W+n jets* (*n=1,2,3*) production at hadron colliders using *BlackHat+SHERPA*: good description of CDF data
- **Public Release** of the codes is expected soon!