Search for $ZH \rightarrow eebb$ in pp Collisions at $D\emptyset$

Satish Desai - Fermilab for the DØ Collaboration PHENO 2009

> Layer Ø of the DØ SMT Installed in Spring of 2006 Improves Tracking Reconstruction

- At low masses, $H \rightarrow bb$ is dominant decay mode
- Multijet production of bb makes highest cross section process hopeless
- Search in association with Z (or W) decaying to electrons (or other leptons)

Process	$\sigma \times BR(fb)$	
Z(→ee)	755,000 🔪	
Z(→ee) +HF	18,100	
tt→evevbb	72.9	Both exclusive Z and Z + light jets
Diboson →ee+jets	310	
ZH →eebb	2.65	
		At M _H =115 GeV

- Also need to contend with the multijet background
- Very difficult experimental challenge
- Simple counting experiment is not sufficient

- Final statistics will be low
 - Keep selection as loose as possible
 - Attempt to maximize efficiency
- Develop a multivariate discriminant to further separate signal from background

Split data into orthogonal sub-channels (electrons, bid)
Extract limits (or discovery!!)
from shape of output distribution

Choose operating point by cutting on neural net output

Satish Desai - 11 May 2009

- Exploit fact that we reconstruct all final state particles
- Use a kinematic fit:
 - Vary jet, electron energies and angles within uncertainties
 - $\ensuremath{\,\bullet\,}$ Constrain M_{ee} to Z mass
 - Constrain total p_T of eejj system to zero
- Not done (yet) for ICR channel

Satish Desai - 11 May 2009

Satish Desai - 11 May 2009

Source	Size (%)	•Ca	tegorize systematics that
Luminosity	6.1	1	cha	nge:
Electron ID Efficiency	2.0-3	3.5	•	Normalization only
Jet ID Efficiency	2		• [Differential distribution of
Jet Energy Resolution	2.5	5	t	he BDT discriminant
Multijet BG Modeling	2			
BG Cross-sections	6-2	0		
Source		Size	(%)	
Jet Energy Scale		-	10	
B-Tagging Efficiency		ę).7	
Mistag Rate		4	.7	
B-jet Fragmentation		C).5	
Z+jet modeling		3	8.6	
Jet Track Matching Efficie	ncy		3	

Satish Desai - 11 May 2009 9

- •Limit / SM Cross Section at M_H =115 GeV
 - 15.3/18.7 Exp/Obs in CC+CC
 - 57/68 Exp/Obs for ICR
- Combination with muon channels in next talk
- We are fast approaching a
 6 fb⁻¹ dataset
- Expect to analyze 10 fb⁻¹ by the end of Run II

- Also working on improvements to the analysis
- Apply kinematic fit to ICR channel
- \bullet Improvements to jet energy resolution M_{bb} still the most powerful variable
- Reduced systematics
- Addition of a Matrix Element discriminant
 - Use differential cross sections convoluted with resolutions to produce signal and background likelihoods
 - Has proven a powerful tool in top analyses

The Higgs search at the Tevatron is getting more exciting all the time! Stay Tuned!!!

Backup Slides

VALMA STATUS VALMA STATUS VALMA STATUS STATUS STATUS STATUS VALMA VALMA STATUS STATUS VALMA VALMA STATUS STATUS

	pre-selection	$70 < M_{ee} < 110 \text{ GeV}$	1 tight b-tag	2 loose b-tags
Data	12747	7610	201	131
Bkg	12926 ± 73	7900 ± 44	198.3 ± 1.3	119.0 ± 0.9
ZH(115)	2.09 ± 0.02	1.98 ± 0.02	0.52 ± 0.005	0.69 ± 0.007
Multijet	5303 ± 62	1368 ± 25	32.1 ± 0.6	16.6 ± 0.3
Zjj	6301 ± 37	5458 ± 35	29.6 ± 0.2	21.8 ± 0.1
$Zb\overline{b}$	352.6 ± 3.5	308.3 ± 3.3	80.4 ± 1.0	45.7 ± 0.8
$Zc\bar{c}$	798.0 ± 7.3	663.7 ± 6.6	45.5 ± 0.5	22.5 ± 0.3
ZZ	36.4 ± 0.6	32.6 ± 0.5	2.46 ± 0.08	2.47 ± 0.10
WZ	43.8 ± 0.9	40.7 ± 0.9	1.53 ± 0.05	0.61 ± 0.02
WW	9.42 ± 0.74	2.97 ± 0.40	0.096 ± 0.035	0.028 ± 0.007
$t\bar{t}$	81.9 ± 0.5	25.5 ± 0.3	6.58 ± 0.08	9.21 ± 0.12

228 TATAN 17298 TATAN TATAN

	pre-selection	$70 < M_{ee} < 110 \text{ GeV}$	1 tight b-tag	2 loose b-tags
Data	2510	1686	44	34
Bkg	2379 ± 39	1651 ± 23	40.0 ± 0.7	25.2 ± 0.4
ZH(115)	0.38 ± 0.01	0.33 ± 0.001	0.09 ± 0.002	0.12 ± 0.003
Multijet	741 ± 33	226 ± 13	4.8 ± 0.6	2.9 ± 0.6
Zjj	1372 ± 18	1203 ± 19	6.7 ± 0.1	5.0 ± 0.08
$Zb\overline{b}$	74.2 ± 1.2	63.7 ± 1.6	16.9 ± 0.5	9.9 ± 0.3
$Zc\bar{c}$	162 ± 2.8	139 ± 4.4	9.7 ± 0.3	5.0 ± 0.2
ZZ	7.6 ± 0.2	6.5 ± 0.2	0.48 ± 0.01	0.60 ± 0.02
WZ	9.4 ± 0.4	8.2 ± 0.4	0.30 ± 0.01	0.11 ± 0.004
WW	1.3 ± 0.3	0.36 ± 0.10	0.01 ± 0.003	0.001 ± 0.002
$t\bar{t}$	11.0 ± 0.1	4.3 ± 0.07	1.14 ± 0.02	1.68 ± 0.03

STAND VIEW STAND