

D0 1 fb⁻¹ W Boson Mass Measurement

Jun Guo

SUNY - Stony Brook

on behalf of the D0 Collaboration

Motivation

2

Mw is a key parameter in the Standard Model

- α: Electromagnetic constant
- **G_F: Fermi constant**
- θ_w: Weak mixing angle
- In the Standard Model, radiative corrections (Δr) depend on Mt as ~Mt² and MH as ~logMH

 $\Delta \mathbf{r} \sim \mathbf{M_t^2}$

- ∆r ~ logM_H
- For equal contribution to the Higgs mass uncertainty we need:
 - $\Delta M_{w} \approx 0.006 \Delta M_{t}$
- Top quark mass is known with an uncertainty ~1.3 GeV, which requires
 - $\Delta M_{W} \approx 8$ MeV, while currently $\Delta M_{W} \approx 25$ MeV.

• M_w is the limiting factor!

PHENO 05/11/2009

Experimental Setup: D0 Detector

Proton-antiproton collisions with center-of-mass = 1.96 TeV

PHENO 05/11/2009

W Mass Measurement Strategy in W->ev decays(1fb⁻¹)

Transverse Mass(M_T), transverse electron momentum (p_T(e)) and missing transverse energy(MET or p_T(v)) are used to extract W mass

$$M_{T} = \sqrt{(E_{T}(e) + E_{T}(v))^{2} - |\vec{p}_{T}(e) + \vec{p}_{T}(v)|^{2}}$$

A fast parameterized simulation(fast MC) is used to model the detector effect and offline selection, which takes the W mass as the input

Data Samples: 1fb⁻¹(2002--2006)

Z->ee : ~18k

W->ev : ~500k

• For both Z and W, select isolated high pT electron(s) in the central calorimeter fiducial region

PHENO 05/11/2009 Jun Guo SUNY @ Stony Brook X

Generator: RESBOS + PHOTOS

• QCD process: RESBOS

(C. Balazs and C.-P. Yuan, Phys. Rev. D 56, 5558 (1997))

Gluon resummation gives reasonable description of the transverse momentum of the vector bosons at low boson p_T

Photon Radiation: PHOTOS

(E. Barbiero and Z. Was, Comp. Phys. Commun. 79, 291 (1994))

- It only simulates the final photon radiation(FSR)
- > Effect of full EWK correction is studied using W/ZGRAD

(U. Baur, S. Keller and D. Wackeroth, Phys. Rev. D 59 013002 (1999))

PHENO 05/11/2009

Selection Efficiency

- Electron selection is subject to multiple factors: detector geometric, electron intrinsic features and contamination from rest of the event
- Study the effect from different sources using different methods.
 - Geometric dependence(primary vertex and η)
 - Intrinsic p_T(e) dependence(internal photon radiation, etc.)
 - u₁₁ efficiency(relative direction between "e" and "recoil")
 - Scalar E_T efficiency(overall hadronic activity effect)

u_{||} Efficiency

- u₁₁ Efficiency is measured using Z->ee events
- The recoil of the boson affects electron identification, especially when the recoil is close to the electron

Final energy response calibration, using Z -> e e:

```
\mathbf{E}_{\text{measured}} = \alpha \mathbf{X} \mathbf{E}_{\text{true}} + \beta
```

9 Use energy spread of electrons in Z decay to constrain α and β

```
for \beta \ll E(e1) + E(e2):
```

```
\mathbf{M}_{ee} = \alpha \mathbf{X} \mathbf{M}_{z} + \mathbf{f}_{z} \beta
```

 $f_z = (E(e1)+E(e2))(1-cos(\gamma_{ee}))/M_{measured}$

 γ_{ee} is the opening angle between the two e's

2 Templates of M_{ee} vs f_z are generated for variant α and β values

Recoil System

Recoil: everything else in the event except the electron(s).

(1) Hard component: from W/Z boson p_T

(2) Soft component: --Spectator parton interactions --Additional ppbar interactions and electronic noise, etc.

- (3) Recoil energy lost in the electron cones and electron energy leakage outside the electron cluster
- (4) FSR outside the electron cones

Additional parameters in the fast simulation are tuned to the data.

PHENO 05/11/2009

Project the u_T (recoil p_T) and Z boson p_T on η axis (bisector of the two electron directions)

Introduce an optimized variable called η -imbalance: $u_{\eta}+p_{\eta}(ee)$

Mean value of η-imbalance: sensitive to hadronic response parameters Width of η-imbalance: sensitive to hadronic resolution parameters (introduced by UA2)

Jun Guo SUNY @ Stony Brook

Hadronic Recoil System

Final adjustment of free parameters in the recoil model is done *in situ* using balancing in $Z \rightarrow e e$ events and the standard UA2 observables.

Backgrounds to *W->ev*

- QCD (di-jet) ((1.49±0.03)%): one jet faked as electron
- Z -> ee ((0.80±0.01)%): one electron lost in ICR(between central and forward calorimeter)
- $W \rightarrow \tau \nu ((1.60 \pm 0.02)\%)$: mostly from τ decays into "evv''

DATA

FAST MC W->τν Z->ee

QCD

90

90

m_T, GeV

m_T, GeV

PDG: $M_7 = 91.1876 \pm 0.0021 \text{ GeV}$)

PHENO 05/11/2009

Mass fits

PHENO 05/11/2009

Jun Guo SUNY @ Stony Brook

systematic uncertainties

Summary of Uncertainties

(Source	$\sigma(m_W)$ MeV m_T	$\sigma(m_W) \text{ MeV } p_T^e$	$\sigma(m_W) \operatorname{MeV} \not\!\!\!E_T$
	Experimental			
	Electron Energy Scale	34	34	34
	Electron Energy Resolution Model	2	2	3
	Electron Energy Nonlinearity	4	6	7
	W and Z Electron energy	4	4	4
	loss differences			
	Recoil Model	6	12	20
	Electron Efficiencies	5	6	5
	Backgrounds	2	5	4
	Experimental Total	35	37	41
	W production and			
	decay model			
	PDF	9	11	14
	QED	7	7	9
	Boson p_T	2	5	2
	W model Total	12	14	17
	Total	37	40	44
	statistical	23	27	23
	total	44	48	50

M_w : 80.401 ± 0.043 GeV (Combined)

PHENO 05/11/2009

Conclusion

$\begin{array}{l} M_{W}:\\ 80.401 \pm 0.023(stat) \pm 0.037(syst) \ GeV = 80.401 \pm 0.044 \ GeV \ (M_{T})\\ 80.400 \pm 0.027(stat) \pm 0.040(syst) \ GeV = 80.400 \pm 0.048 \ GeV \ (p_{T}(e))\\ 80.402 \pm 0.023(stat) \pm 0.044(syst) \ GeV = 80.402 \pm 0.050 \ GeV \ (MET)\\ \underline{80.401 \pm 0.043 \ GeV \ (Combined)} \end{array}$

- D0 group measured W boson mass using 1 fb⁻¹ Run II data with a precision of 0.05%, which is in good agreement with previous measurements.
- Single most precise measurement of the W boson mass to date
- Expect ~ 25 MeV uncertainty with 5 fb⁻¹ D0 data

05/11/2009

Backup Slides

Experimental Setup: Tevatron

PHENO 05/11/2009

Jun Guo **SUNY @ Stony Brook**

20

- ~4X0 dead materials in front of the calorimeter
- Need to know number of X0 in front of calorimeter precisely
- Measurement method:
 - electron energy fraction in each layer is sensitive to the material in front of calorimeter
 - Construct a model to predict EMF distribution for different nX0

Data Samples: 1fb⁻¹(2002--2006)

- Common Selection for both *Z*->*ee* and *W*->*e*_V:
 - |Vtx_{primary}|<60 cm</pre>
 - Single electron trigger fired
 - Electron in central calorimeter: $|\eta_{det}| < 1.05$
 - Fiducial region
 - p_T(e) > 25 GeV, iso<0.15, emfrac>0.9, shower shape, track match
 - Recoil $p_T < 15 \text{ GeV}$
- Additional Selection for *Z->ee* (~18k):
 - 70 GeV < Invariant Mass(e,e) < 110 GeV</p>
- Additional Selection for *W->ev*(~500k):
 - 50 GeV < M_T < 200 GeV
 - MET > 25 GeV

Ч 1.5

0.5

-0.5

-1.5

-60

Geometric dependence and u₁₁ Efficiency

SUNY @ Stony Brook

- Efficiency is measured using the tag-and-probe method on Z->ee events
- The recoil of the boson affects electron identification, ٠ especially when the recoil is close to the electron

-40

-20

I

PDF Uncertainties

SUNY @ Stony Brook

Graph

35 40 PDF Set

25

30

40 PDF Set **△M_w(MET): 14 MeV**

25

30

35

PHENO 05/11/2009

Final Efficiency Check

- The SET and pure p_T(e) dependence of efficiency is studied in details using full MC(6 fb⁻¹) truth, which cannot be performed in data due to the method and limited statistics
- Use tag-and-probe method to measure p_T(e) dependence in full MC and data as a final check

