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MotivationMotivation

MW is a key parameter in  the Standard Model
1 α: Electromagnetic constant

In the Standard Model, radiative corrections (Δr) depend on Mt as

Δr1sinθ
1

FG2
πα

WM
W −

=
α:  Electromagnetic constant
GF: Fermi constant
θW: Weak mixing angle

In the Standard Model, radiative corrections (Δr) depend on Mt as 
~Mt

2 and MH as ~logMH

Δr ~ M 2 Δr ~ logMΔr ~ Mt
2 Δr ~ logMH

For equal contribution to the Higgs mass 
uncertainty we need:  
ΔMW ≈ 0.006 ΔMt
Top quark mass is known with an uncertainty 
~1.3 GeV, which requires 
ΔMW ≈ 8 MeV, while currently ΔMW ≈ 25 MeV. 
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W , y W
MW is the limiting factor!

2



Experimental Setup:Experimental Setup:
D0 D t tD0 D t tD0 DetectorD0 Detector

Tracking SystemTracking System
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Proton-antiproton collisions with center-of-mass = 1.96 TeV



WW Mass Measurement StrategyMass Measurement Strategy
in in WW-->e>eνν decays(1fbdecays(1fb--11))

Transverse Mass(MT), transverse electron momentum (pT(e)) and 
missing transverse energy(MET or pT(ν)) are used to extract W mass

in in WW-->e>eνν decays(1fbdecays(1fb 11))

A fast parameterized simulation(fast MC) is used to model the detector 
effect and offline selection, which takes the W mass as the input 

2
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Do a blind analysis 

u(e)p)(υp rrr
−−= TTT u(e)p)(υp =

MW = 80 GeV
MW = 81 GeV

W >eν

W

Binned log likelihood is used
to extract W mass
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W->eν



Data Samples:Data Samples:Data Samples:Data Samples:
1fb1fb--11(2002(2002----2006)2006)

Electron

Positron

Electron

Z->ee : ~18k W->eν : ~500k

• For both Z and W, select isolated high  pT electron(s) in the 
central calorimeter fiducial region

Z >ee : 18k W >eν : 500k
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central calorimeter fiducial region
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Generator: RESBOS + PHOTOSGenerator: RESBOS + PHOTOSGenerator: RESBOS + PHOTOSGenerator: RESBOS + PHOTOS

• QCD process: RESBOSQCD process:  RESBOS 
(C. Balazs and C.-P. Yuan, Phys. Rev. D 56, 5558 (1997))

Gluon resummation gives reasonable description of the transverse 
momentum of the vector bosons at low boson pmomentum of the vector bosons at low boson pT

• Photon Radiation: PHOTOS 
(E. Barbiero and Z. Was, Comp. Phys. Commun. 79, 291 (1994))

It only simulates the final photon radiation(FSR)
Effect of full EWK correction is studied using W/ZGRAD
(U. Baur, S. Keller and D. Wackeroth, Phys. Rev. D 59 013002 (1999))
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Selection EfficiencySelection EfficiencySelection EfficiencySelection Efficiency

El t l ti i bj t t lti l f t d t t• Electron selection is subject to multiple factors: detector 
geometric, electron intrinsic features and contamination from rest 
of the event

• Study the effect from different sources using different methods.
– Geometric dependence(primary vertex and η)
– Intrinsic pT(e) dependence(internal photon radiation, etc.)
– u|| efficiency(relative direction between “e” and “recoil”)
– Scalar ET efficiency(overall hadronic activity effect)T y( y )

Jun Guo
SUNY @ Stony Brook

PHENO
05/11/2009 7



uu EfficiencyEfficiencyuu|||| EfficiencyEfficiency

u Efficiency is measured using Z->ee eventsu|| Efficiency  is measured using Z->ee events

The recoil of the boson affects electron identification, especially when 
th il i l t th l tthe recoil is close to the electron
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Electrons Energy ResponseElectrons Energy Response

Final energy response calibration, using Z -> e e :
E d = α x E + βEmeasured = α x Etrue + β

Use energy spread of electrons in Z decay to constrain α and β
for β E(e1) + E(e2):   

Mee = α x MZ +fZ β
fZ = (E(e1)+E(e2))(1-cos(γee))/Mmeasured

γee is the opening angle between the two e’sγee s e ope g a g e e ee e o e s
Templates of Mee vs fZ are generated for variant α and β values

ΔM 34 M V 100% l t dΔMW = 34 MeV,  100% correlated 
between all three observables
It is the dominant systematic uncertainty 
in the W mass measurement (limited by Z

α= 1.0111 ± 0.0043
β= -0.404 ± 0.209 GeV
correlation: -0.997

in the W mass measurement (limited by Z
statistics )
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Recoil SystemRecoil Systemyy

Recoil: everything else in the event except theRecoil: everything else in the event except the 
electron(s).

(1) Hard component: from W/Z boson pT

(2) Soft component:
--Spectator parton interactions
--Additional ppbar interactions and 

electronic noise, etc.

(3) Recoil energy lost in the electron cones 
d l t l k t id thand electron energy leakage outside the 

electron cluster

(4) FSR outside the electron cones(4) FSR outside the electron cones

Additional parameters in the fast simulation 
are tuned to the data
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are tuned to the data.
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Recoil response and resolutionRecoil response and resolution

Project the uT(recoil pT) and Z boson pT on η axis (bisector of the two 

pp

j T( pT) pT η (
electron directions)

Introduce an optimized variable called η-imbalance: uη+pη(ee)
Mean value of η-imbalance: sensitive to hadronic response parameters
Width of η-imbalance: sensitive to hadronic resolution parameters

(introduced by UA2)

η-imbalance
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HadronicHadronic Recoil Recoil SystemSystem

Final adjustment of free parameters in the recoil model is done in situ
using balancing in Z -> e e events and the standard UA2 observables

yy

using balancing in Z -> e e events and the standard UA2 observables.

χ2/dof : 3.1/7 χ2/dof:
91.8/90

χ2/dof : 4.5/8
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Z Hadronic Recoil pT (GeV)



Backgrounds to Backgrounds to WW-->e>eννBackgrounds to Backgrounds to WW-->e>eνν

QCD (di j t) ((1 49±0 03)%) j t f k d l tQCD (di-jet) ((1.49±0.03)%): one jet faked as electron

Z -> ee ((0.80±0.01)%): one electron lost in ICR(between central (( ) ) (
and forward calorimeter)

W -> τν ((1.60±0.02)%): mostly from τ decays into “eνν”W > τν ((1.60±0.02)%): mostly from τ decays into eνν
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Mass fitsMass fitsMass fitsMass fits

MTZ Mass

Z->ee : ~18k W->eν : ~500k
MW = 80.401 ± 0.023 GeV (stat)MZ = 91.185 ± 0.033 GeV (stat)

(Z mass value from LEP was an input to 
electron energy scale calibration,
PDG: M 91 1876 ± 0 0021 GeV)
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PDG: MZ = 91.1876 ± 0.0021 GeV)
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Mass fitsMass fitsMass fitsMass fits

pT(e)

MW = 80.400 ± 0.027 GeV (stat)

MET

80 402 ± 0 023 G V ( )
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MW = 80.402 ± 0.023 GeV (stat)
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Summary of UncertaintiesSummary of UncertaintiesSummary of UncertaintiesSummary of Uncertainties
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statistical 23 27 23statistical   23                       27                     23
total  44                       48                     50

M : 80 401 ± 0 043 GeV (Combined)
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MW : 80.401 ± 0.043 GeV (Combined)



ConclusionConclusion
MW :
80.401 ± 0.023(stat) ± 0.037(syst) GeV= 80.401 ± 0.044 GeV (MT)

( ) ( ) ( ( ))80.400 ± 0.027(stat) ± 0.040(syst) GeV= 80.400 ± 0.048 GeV (pT(e))
80.402 ± 0.023(stat) ± 0.044(syst) GeV= 80.402 ± 0.050 GeV (MET)
80.401 80.401 ±± 0.043 0.043 GeVGeV (Combined)(Combined)

D0 group measured W boson mass 
using 1 fb-1 Run II data with a 
precision of 0 05% which is in goodprecision of 0.05%, which is in good 
agreement with previous 
measurements.

(March 2009)

Single most precise measurement 
of the W boson mass to date

Expect ~ 25 MeV uncertainty with(March 2009) Expect ~ 25 MeV uncertainty with
5 fb-1 D0 data
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• Backup Slides
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Experimental Setup: Experimental Setup: TevatronTevatron

Tevatron Collider Chicagog
‐

CDF
DØ

TevatronTevatron

6 km circumferenceMain Injector

2008 07 11 19Junjie Zhu

Proton-antiproton collisions with center-of-mass = 1.96 TeV
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2008‐07‐11 19Junjie Zhu
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Uranium/LiquidUranium/Liquid--argon Calorimeterargon Calorimeter

Energy measurement and identificationEnergy measurement and identification
for electrons, photons and jets
Central and Forward
Electromagnetic and Hadronic

Full coverage : |η| < 4.2 

46 000 h l~46,000 channels

Fine segmentation(towers): Δη x Δϕ = 0.1x0.1

(0 05x0 05 in third EM layer near shower maximum)
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(0.05x0.05 in third EM layer, near shower maximum)



Observables SensitivitiesObservables SensitivitiesObservables SensitivitiesObservables Sensitivities
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PT(W) included

Detector Effects added 
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Ref. hep‐ex/0011009
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of missing transverse momentum 
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Material Material in front of in front of calorimetercalorimeter

• ~4X0 dead materials in front of the calorimeter
• Need to know number of X0 in front of calorimeter preciselyNeed to know number of X0 in front of calorimeter precisely
• Measurement method:

– electron energy fraction in each layer is sensitive to the material 
in front of calorimeterin front of calorimeter

– Construct a model to predict EMF distribution for different nX0
– Compare predictions with data
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depth in radiation lengths (X0)
Additional material by fitting for
three EM layer together:
n=0.1633 +- 0.0095 22



Data Samples:Data Samples:

• Common Selection for both Z->ee and W->eν :

Data Samples:Data Samples:
1fb1fb--11(2002(2002----2006)2006)

Common Selection for both Z >ee and W >eν :
– |Vtxprimary|<60 cm
– Single electron trigger fired
– Electron in central calorimeter: |ηd t|<1.05Electron in central calorimeter: |ηdet|<1.05
– Fiducial region
– pT(e) > 25 GeV, iso<0.15, emfrac>0.9, shower shape, track match
– Recoil p < 15 GeV– Recoil pT < 15 GeV

• Additional Selection for Z->ee (~18k):
70 GeV < Invariant Mass(e e) < 110 GeV– 70 GeV < Invariant Mass(e,e) < 110 GeV

• Additional Selection for W->eν (~500k):
50 G V M 200 G V– 50 GeV < MT < 200 GeV

– MET > 25 GeV
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Geometric dependence and Geometric dependence and 
uu|||| EfficiencyEfficiency

• Efficiency is measured using the tag-and-probe method• Efficiency  is measured using the tag-and-probe method 
on Z->ee events

• The recoil of the boson affects electron identification,The recoil of the boson affects electron identification, 
especially when the recoil is close to the electron

η
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Vertex_z (cm)
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PDF UncertaintiesPDF Uncertainties

ΔMW(pT(e)): 11 MeV

ΔM (M ): 9 MeVΔMW(MT): 9 MeV
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ΔMW(MET): 14 MeV



Final Efficiency CheckFinal Efficiency CheckFinal Efficiency CheckFinal Efficiency Check

Th SET d ( ) d d f ffi i i t di d i• The SET and pure pT(e) dependence of efficiency is studied in 
details using full MC(6 fb-1) truth, which cannot be performed in 
data due to the method and limited statistics 

• Use tag-and-probe method to measure pT(e) dependence in full 
MC and data as a final check 
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