Top to Bottom, Bottom to Top

Jessie Shelton

Rutgers

work in progress with Scott Thomas and Michael Graesser

PHENO '09 Symposium, May 11, 2009

Top Physics at the LHC

- The LHC will be a top factory: $\sigma(pp \rightarrow t\bar{t}) = 830 \text{ pb}$
 - Nearly 1 SM top pair per second at low design luminosity
- Precision characterization of the top system will be an important part of the physics program:
 - large top Yukawa gives large sensitivity to EWSB physics
 - large top sample enables study of rare decays
 - SM tops are important background to new physics searches

• Templates for precision measurements in the top system

- minimize theoretical and/or experimental uncertainties
- demonstrate role of tops as useful source of bottom quarks at LHC

A template for the top mass

• Semileptonic top decays: $m_{b\ell}$ an attractive variable for mass measurements

Distribution of $\tilde{m}_{b\ell} = 2p_b \cdot p_\ell$ in standard model top decay

• Lorentz invariant: insensitive to uncertainties from production mechanisms, PDFs, ISR

A template for the top mass

- Leading source of uncertainty in top mass measurements: *b*-jet energy scale J_b
 - \circ energy rescaling relating measured energy to initial parton energy: $p_b \equiv J_b \; p_{meas}$
- In distribution of $m_{b\ell}$, dependence on J_b factorizes:

$$\circ \tilde{m}_{b\ell}^2 = 2p_b \cdot p_\ell \to J_b \times 2p_b \cdot p_\ell$$

- Two independent pieces of information:
 - scale: depends on J_b , m_t • shape: depends on m_t
- Use in conjunction with other methods to measure m_t , J_b self-consistently

Top mass from leptons

- 10% of the time, $b \to c \mu \nu_{\mu}$
- Measure top mass in fully leptonic invariant $m_{\mu_b\ell}$

 $\circ \ (t \to b \ell \nu_\ell) \ \ \otimes \ \ (b \to c \mu \nu_\mu)$

Top mass from leptons

- 10% of the time, $b \to c \mu \nu_{\mu}$
- Measure top mass in fully leptonic invariant $m_{\mu_b\ell}$

 $\circ (t \to b \ell \nu_{\ell}) \quad \otimes \ (B \to X_c \mu \nu_{\mu})$

Top mass from leptons

- 10% of the time, $b \to c \mu \nu_{\mu}$
- Measure top mass in fully leptonic invariant $m_{\mu_b\ell}$

 $\circ (t \to b \ell \nu_{\ell}) \quad \otimes \ (b \to B) \quad \otimes \ (B \to X_c \mu \nu_{\mu})$

B fragmentation function

- Fragmentation function $D_b(x_B)$: probability of finding *B* hadron in *b*-jet with momentum fraction x_B
 - Important source of uncertainty in top mass measurements
- Nonperturbative: must take from data
 - \circ Measured at Z peak at LEP, SLC
 - Evolve to $\mu \simeq m_t/2$ to describe top system
- $m_{\mu\ell}$: a joint measurement of m_t , $D_b(x_B)$
- Measure $D_b(x_B)$ in top system at LHC
 - \circ need a source of bs with known energy
 - o $Z \rightarrow b\bar{b}$ not feasible: too much background, not enough rate (dibosons)

More Muons

- Proposed top mass measurement in $t \to b\ell\nu$, $B \to J/\psi \to \mu\mu$ events using $m_{J/\psi\ell}$ (Karchilava)
 - Similar idea: leptonic invariant
 - BR $(B \to J/\psi \to \mu\mu) \simeq 6 \times 10^{-4}$
 - $\circ~b$ fragmentation functions as measured in different channels are not simply related
- Inclusive variables less sensitive to theoretical uncertainties
- \bullet Can be maximally inclusive: measure inclusive $D_b(x_\mu)$ in independent sample of top decays
 - \circ reduce modeling uncertainties at the cost of reintroducing (indirect) dependence on b-jet energy scale

Conclusions

- Detailed characterization of top system an important part of LHC new physics program
- Invariant mass distributions offer clean templates for measurements in top system
 - provide powerful cross check and help ease identification of new physics
- Standard model tops are an important source of bottom quarks with fixed kinematics at the LHC
 - \circ enable measurements of b properties at new energy scales