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4.29 update

• Tested the pulse classification plots & algs on PREM webpage
• Most plots are showing properly
• The plots with [SS] are not showing up –> special characters [] à change [] to __
• Re-group the pulse plots with their S1, S2, SPE, MPE, SE sub-plots à change titles
• Fraction algs are returning value 0 on PREM webpage

• The Hitchhiker’s Guide to Machine Learning
• NERSC videos on basic ML, Deep Learning, Neural networks
• LZ ML Jupiter notebook tutorials
• Search for the possibility of ML + data quality checks

http://../Downloads/The%20Hitchhiker's%20Guide%20to%20Machine%20Learning.docx
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Training

Too accurate to a 
specific training data 
set 

Too generalized 

The training time is important (# epochs)
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Deep Learning
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Layer

More hidden layers à more 
chaining of non-linearity à increase 
the complexity of the model



Branches

Data is labeled

Predicting categorical 
things
signal/bck
BDT, SVM, NN

Predicting real value 
number
reconstruction of
(pos, E)
NN, GAN

Discover hidden structure
in the unlabeled data

Learning actions from the environment



Initial Questions (data quality)
• What are we trying to model?

• MDC3 simulation data (normal distribution data with label), 5 main populations? Each plot?
• Possibly real data later (normal + anomalous data without labels)

• What are we trying to classify?
• Normality vs. anomalies:

• 1. Shift of the current population 
• 2. Disappearance of the current population 
• 3. Appearance of the new population 

• How are we going to classify anomalies?
• 1. Compare the test data against the trained normal set

• 2. Compare the data with with time propagation
Trained model

Test data

Time

Fixed 
learning 

Online 
learning 



Later Questions (data quality)

• How to evaluate that the model is doing a good job?
• Choose the training epoch à optimal fit
• Computation time: quick check
• A certain tolerance on some anomalies (i.e. noise…)
• The determination of both abnormality of current model (shift & 

disappearance) & novel model (appearance)

• How do we know if this model will be productive on the data that 
we’ve never seen before? 
• Tests on real data and see if the output matches our expectations



Anomaly Detection Deep Learning

• To model normal behavior first, and then exploit this knowledge to 
identify anomalies. 
• An anomaly score is assigned to each data point à measurement of the 

deviation from the normal behavior
• Determine the threshold: scores above a given threshold are tagged as 

anomalies; below this threshold are tagged as normal 

• Three branches (supervised, unsupervised, semi-supervised)
• Five models (AutoEncoder; Variational AutoEncoder; GAN; Sequence-

to-Sequence Model; One Class SVM)
• Data Quality & Physics Analysis (signal/background)  



Branches
• Supervised: labels are available for both 

normal & anomalous sets
• Both normal and anomalous datasets are 

labeled
• Don’t have labeled anomalous data

• Unsupervised: no labels for the training set
• Both normal and anomalous datasets are not 

labeled
• Learn by finding structure within the input 

features
• Semi-supervised: labels are only available 

for the normal set, but not the anomalous 
set
• With the assumption: most data points within 

an unlabeled dataset are normal
• Large amounts of unlabeled data + small 

amounts of labeled data
• Detection of both known and previously 

unseen anomalies



Autoencoders

Input data à low-
dimensional 
representation 

Low-dimensional 
representation à back 
to original input data

compression function reconstruction function

• The model is trained to 
minimize the 
reconstruction error

• Dimensionality
reduction technique

a point estimate



Autoencoder

To model normal behavior
• Semi-supervised approach 
• Train the autoencoder on 

normal data samples (sim 
data)

• Model learns a mapping
function to reconstruct 
normal data samples 
successfully 

To identify anomalies
• Reconstruction error score

à Anomaly score
• Flag error if above a 

certain threshold score


