Searches for exotic decays of the Higgs boson as a window to the dark sector with ATLAS

CIPANP 2022 31st August

William Fawcett

University of Cambridge On behalf of the ATLAS collaboration

Analyses covered

All full Run-2 analyses with 139/fb of data Deep(er) dive of 4 searches

- Search for non-pointing/delayed photons
 Zh→llγγ+MET [ATLAS-CONF-2022-017]
- Search for NMSSM Higgs from Zh production Zh→llbb+METs [JHEP 01 (2022) 063]
- VBF search for higgs to invisible/dark photons
 h→χχ, h→γ_dγ [EPJC 82 (2022) 105]
- Dark sector Higgs decays
 h→Z_dZ_d→IIII [JHEP 02 (2022) 041]
- + some bonus searches & results

Non-Pointing/Delayed photons ATLAS-CONF-2022-017

Non-Pointing/Delayed Photons Analysis

- Photons from the decays of a heavy long-lived particle (LLP) that are late with respect to bunch crossings, and don't point to the primary vertex
- Use precise Liquid Argon Calorimeter pointing and timing (unique to ATLAS)
 - Signal region = high MET, high timing, high pointing
 - Optimised separately for low- and high-LSP/NLSP splitting (LSP = Lightest SUSY Particle)
 - Fully data-driven background estimate used

Non-Pointing/Delayed Photons Results

- Simultaneously fit photon timing data templates across 5 categories of photon pointing, separately for low- and high-mass splitting regions
- Result: no excess beyond the SM expectation, set limits on BR($h \rightarrow 2 \times NLSP$)
 - As low as 1% for τ ~1 ns and high LSP/NSLP mass splitting of ~40 GeV
 - First Run-2 sensitivity to this signature

Non-Pointing/Delayed Photons Results

- Simultaneously fit photon timing data templates across 5 categories of photon pointing, separately for low- and high-mass splitting regions
- Result: no excess beyond the SM expectation, set limits on BR($h \rightarrow 2 \times NLSP$)
 - Interpolated results show sensitivity across the m(LSP), m(NLSP), τ plane
 - First Run-2 sensitivity to this signature

Other LLP Higgs portal searches

Displaced jets in the calorimeter
 <u>JHEP 06 (2022) 005</u>

 Displaced leptons in the calorimeter / muon system <u>arXiv:2206.12181</u>

- Limit on 125 GeV mediator Higgs boson decaying to pair of scalars, shown in Higgs BR vs cτ
- Case where Higgs decays to a pair of long-lived neutral scalars
- Prompt and detector stable limits shown

Will Fawcett (University of Cambridge)

Search for NMSSM Higgs from Zh production Zh→IIbb+MET JHEP 01 (2022) 063

Also see Christian's talks

Search for NMSSM Higgs from Zh production

- Up to ~21% of Higgs decays goes via undetected modes [PRD.101.012002]
- Searches for exotic decays of the Higgs is a high priority for ATLAS
- MSSM has 4 Higgs bosons, NMSSM introduces an 5th Higgs boson, *a*, that can alleviate the little hierarchy problem. Needs to be less massive than the 125 GeV Higgs boson.
- In Peccei-Quinn symmetry limit of the NMSSM, $h o \tilde{\chi}_2^0 \tilde{\chi}_1^0$ dominates over h o aa
- Strategy: Search for a peak in the dijet invariant mass distribution from $a \rightarrow bb$

Overall selection

Background Estimation

- Backgrounds, major: ttbar, Z+jets, minor: diboson, single top (Wt)
- Normalisation of major backgrounds extracted from fit to Control Region (CR)
- m_{jj} distribution: e.g. CRZ, non Z+jets contribution subtracted (~30%), giving "pure Z+jets" m_{jj} distribution. This shape then transferred to Signal Region (SR). Likewise for CRTop.
- Shape of m_{jj} for CRZ found to differ slightly from that in the SR (according to MC in the SR). Binby-bin correction factor applied.

CRTop (ttbar) same as SR except with 60 < MET < 100 GeV

CRZ (Z+jet from heavy flavour) same as SR except with 60 < MET < 100 GeV

Results

- Z+jets and ttbar backgrounds estimated from shapes taken from SR. Normalisation for each background taken from MC in the SR.
- Multi bin fit of mjj distribution done:
 - Background-only fit (fit to the SM background from "is the data consistent with the SM?")
 - Fit with background+signal (to rule out BSM signal hypotheses)
- No significant excess seen over SM expectation
- Assuming SM Zh production, limits set on $BR(h \to \tilde{\chi}_2^0 \tilde{\chi}_1^0 \to a \tilde{\chi}_1^0 \tilde{\chi}_1^0 \to b \bar{b} \tilde{\chi}_1^0 \tilde{\chi}_1^0)$, max limit of 31%

Vector Boson Fusion EW($Z\gamma \rightarrow vv$) measurement and Higgs to invisible/dark photons $h \rightarrow \chi\chi, h \rightarrow \gamma_d\gamma$ EPJC 82 (2022) 105

A measurement and a search

- Measurements of vector boson scattering can be a probe for BSM physics
- This paper: measurement of the electroweak production of two jets in association with a Z_γ pair, with the Z boson decaying into two neutrinos.
- Signature: two forward hadronic jets (from VBF), a photon and significant MET

- Strategy: measure the EW $Z(\rightarrow vv)\gamma$ + jets, and once the SM process is understood, search for the Higgs decaying into invisible particles.
- Interpret search results in "Higgs portal" model and "dark photon" model that have the same final state.

Signals

• Signature: two forward hadronic jets (from VBF), a photon and significant MET

Higgs portal model:

Introduce a dark matter candidate which behaves as a singlet under SM gauge symmetries.

Dark photon model

Introduce a light/massless "dark photon", coupled to Higgs through unbroken U(1) dark sector.

Radiate photon from W Improves background rejection and signal efficiency but lowers cross section

Event selection

Baseline selection applied for all scenarios, then extra specific cuts made for the measurement and each signal model.

VBF process: jets tend to be in different hemisphere of the detector & more forward than non-VBF processes.

Photons

- One photon with 15 < pT < 110 GeV (upper bound reduces from photon+jet background). $\Delta\phi(E_T^{miss}, \gamma) > 1.8$
- Photon centrality > 0.4: $C_{\gamma} = \left[-\frac{4}{(\eta_1 \eta_2)^2} \left(\eta_{\gamma} \frac{\eta_1 + \eta_2}{2} \right) \right] C_{\gamma} = 1$ when photon between two VBF jets. 1/e = 0.38 when aligned w/ jet

Jets

- High pT (j₁ > 60 GeV, j₂ > 50 GeV), opposite hemispheres η(j₁) × η(j₂) < 0. Well separated in eta: |Δηjj| > 3.0, large invariant mass: mjj > 0.25 TeV, not back-to-back in transverse plane: Δφjj< 2.5
- Suppress contribution from strong $V\gamma$ + jets production with C3 (equivalent to $C\gamma$ for 3rd jet if there is one).

Veto events with leptons

Background

- Main backgrounds: strong $Z\gamma$, strong $W\gamma$
- CRs for $W(\rightarrow l\nu)\gamma$ + jets used to normalise that background, likewise CRs for $Z(\rightarrow \nu\nu)\gamma$ + jets events
- Jet → photon fake estimated with ABCD method (W/Z+jets in which one jet fakes a photon).
- Electron → photon fakes: Determined from the rates of Z boson reconstruction in e_γ and e+e- final states. V small background for EW Z_γ + jets and Higgs → invisible, but more relevant for dark-photon.

Measurement results

- Fit to the 4 m_{jj} bins. EW $Z\gamma$ normalisation floating in the fit in the SR
- Measured fiducial cross-section: $\sigma^{\text{fid.}} = 1.31 \pm 0.20(\text{stat}) \pm 0.20(\text{syst})$ fb,
- > 5 sigma observation

Search results

Invisible Higgs

- Train DNN, bin output score
- No excess observed, 0.37 observed UL on the branching ratio to invisible particles.
- Limit not the strongest but useful in combination

Dark Photon

Limit up to 2 TeV: currently world's strongest

Bonus: Direct search for invisible Higgs: JHEP 08 (2022) 104

- Same signature as previous search with similar backgrounds
- Strategy: target VBF process: wide rapidity gap, Δη_{jj} & large invariant mass m_{jj}
- Additional selection on MET, jet centrality, VBF jet topology
- Signal yield extracted from binned likelihood fit to 16 search bins (jet multiplicity, $m_{jj} \Delta \varphi_{jj}$)
- Z_{II} and W_{Iv} CRs to estimate main backgrounds $Z(\rightarrow vv)$ +jets, $W(\rightarrow Iv)$ +jets

Dark sector Higgs decays $h \rightarrow Z_d Z_d \rightarrow IIII$ JHEP 03 (2022) 041

Also see Christian's talks

Higgs decay to new boson

- Many SM extensions include U(1) dark gauge symmetry with new gauge boson Z_d
- Mixes with SM Higgs and other gauge bosons.
- Gives rise to $h \rightarrow Z_d Z_d$ and $h \rightarrow Z Z_d$, Z_d decays ~30% to lepton pairs
- 4 lepton final state also sensitive to $h \rightarrow aa \rightarrow 4\mu$ if BR($a \rightarrow \mu\mu$) is significant
- Overall signature: $h \rightarrow XX \rightarrow 4$ leptons

a: Pseudoscalar dark Higgs

$$h \rightarrow Z_d Z_d / aa \rightarrow IIII$$

Selection

Two lepton pairs: (ee)(ee), (ee)($\mu\mu$), ($\mu\mu$)($\mu\mu$) Construct invariant mass pairs: m₁₂, m₃₄ m₁₂ closest to m_{Z:} lm₁₂ - m_Zl < lm₃₄ - m_Zl mass compatibility of pairs: m₁₂/m₃₄ > ~0.85

Strategy: search for a peak in $< m_{\parallel} >$ **Main backgrounds**: $h \rightarrow ZZ^*$ and ZZ^*

Consider only 4μ for $1 < m_X < 15$ GeV because electrons become difficult to separate at low pT

$h \rightarrow Z_d Z_d / aa \rightarrow IIII$

- Cross-section upper limits set on the different modes
- Significant improvement on previously set limits
- 2.5 σ (local) excess in High mass $h \rightarrow Z_d Z_d$ channel around m(Z_d) = 28 GeV

$h \rightarrow ZZ_d \rightarrow IIII$

Two lepton pairs: (ee)(ee), (ee)($\mu\mu$), ($\mu\mu$)($\mu\mu$)

 $H \cdots \int_{Z_d}^{\ell} \ell$

One pair (m₁₂) consistent with m_Z

 m_{4l} consistent with m_h

Strategy: look for peak in distribution of m_{34} **Main backgrounds**: $h \rightarrow ZZ^*$ and ZZ^*

Summary

- Many searches for non-standard decays of the Higgs boson, with a wide reach:
 - long lived particles
 - Measurements and searches together
- No significant excess beyond SM prediction
 - 2.5σ local excess in High mass h→Z_dZ_d channel
- All results full Run-2, many will improve with more data

• Stay tuned for fresh results from Run-3

Direct search for invisible Higgs: JHEP 08 (2022) 104

• Results also interpreted as upper limits on the spin-independent WIMP-nucleon cross section using Higgs portal interpretations of B_{inv} at 90% CL vs m_{WMP}.

