The SuperCDMS SNOLAB Experiment A Broadband Dark Matter Search

CIPANP 2022

Tarek Saab University of Florida

Outline

- Fundamental Principles of Dark Matter Detection: How dark matter interacts
- The SuperCDMS Detectors:

 - The principles behind measuring DM signal and minimizing background The road to low mass / energy resolution
- The SuperCDMS Experiment in Action:
 - SuperCDMS @ SNOLAB
 - Current results and Future Reach

T. Saab \ CIPANP 2022 \ August 31, 2022

The SuperCDVIS Collaboration

I. The SuperCDMS Detectors

A particle walks into a detector?

SuperCDMS Detector Technology

Low Background

 Prompt phonon and ionization signals allow for discrimination between nuclear and electron recoil events

Low Threshold Detector:

- Drifting electrons/holes across a potential (V_b) generates a large number of phonons (Luke phonons).
 - Enables very low thresholds!
 - Trade-off: No event-by-event NR/ER discrimination

T. Saab \ CIPANP 2022 \ August 31, 2022

Sensors measure Et, and neh

Sensors measure Et

SuperCDMS Detectors: Posing for the Cameras

- Detectors made of high-purity Ge and Si Crystals
 - Si (0.6 kg) provides sensitivity to lower dark matter masses, Ge (1.5 kg) provides sensitivity to lower dark matter cross-sections
- Low operation temperature: ~15mK
 - Athermal phonon measurement with TESs
 - Ionization measurement (iZIP) with HEMTs

- Multiple channels per detector to identify event position
- Initial payload will consist of 4 towers
 - 6 detectors each
 - 2 iZIP: 10 Ge / 2 Si
 - 2 HV: 8 Ge / 4 Si

Small, Mini, Micro, HVeV Detectors

- SuperCDMS has also developed gram scale R&D detectors
 - Single electron-hole pair resolution devices will have sensitivity to a variety of sub-GeV DM models with gram*day exposures
 - Largest "quantum resolution" detectors available
 - Powerful tool for low-energy rare event searches
- 0.93 g Si crystal (1x1x0.4 cm³) operated at a surface test facility.
- Exposure: 0.49 gram-days (16.1 hours)
 - energy resolution: $\sigma_{ph} \sim 3 \text{ eV}$
 - charge resolution: $\sigma_{eh} \sim 0.03 \text{ e}^{-h+}$
 - operation voltage: 0–100 V

SuperCDMS Detectors & Dark Matter Mass Scales

T. Saab \ CIPANP 2022 \ August 31, 2022

- Limited discrimination,
- HV, no discrimination,
- HV, no discrimination,
- HV, no discrimination,

≥ 5 GeV ≥ 1 GeV ~0.3 – 10 GeV ~0.01 – 10 GeV ~0.5 MeV – 10 GeV $\sim 1 \text{ eV} - 500 \text{ keV}$ ("peak search")

III. The Neutron Beam Measurement in Si

A proton, a Li atom, and a neutron

- A measurement of the nuclear recoil ionization yield down to 100 eV recoil
 - Essential to understanding the response of the HV detectors to nuclear recoils
 - Current state of knowledge in Si:

How To Impact

- Determination of yield via measurement of the total phonon energy in the detector and kinematic measurement of the recoil energy via a coincident detection of the scattered neutron
- Neutrons courtesy of Triangle Universities Nuclear Laboratory
 - 1.889 MeV protons with 2.5 MHz pulsing

- Aim for ²⁸Si elastic scattering resonance at 55.7 keV
- Same HVeV detector used for HVeV DM Run 2
 - 1x1x0.4 cm³ Si crystal (0.93 g)
 - 2 channel TES readout
 - Energy resolution: $\sigma_{ph} \sim 3 \text{ eV}$
 - Charge resolution: $\sigma_{eh} \sim 0.03 e^{-h^+}$

APAC7

$E_r = 2E_{\rm n} \frac{M_{\rm n}^2}{\left(M_{\rm n} + M_{\rm T}\right)^2} \left(\frac{M_{\rm T}}{M_{\rm n}} + \sin^2\theta - (\cos\theta)\sqrt{\left(\frac{M_{\rm T}}{M_{\rm n}}\right)^2 - \sin^2\theta}\right)$

How To Impact

- Neutron detectors
 - EJ-301/309 liquid scintillators, sensitive to neutrons down to 10 keV
 - 26 detectors focused on 100 eV, 220 eV, and 460 eV ulletrecoil energy points measure y in new parameter space
 - Three detectors at 0.75 keV, 2 keV, and 3.8 keV to overlap with existing measurements

Image credit: Tom Ren

How To Impact

Data

- 3 weeks of data taking at 50% duty cycle
- Two days at 0 V for tuning cuts and validating HVeV—scintillator neutron coincidence technique
- Data taken at 20, (100) and 180 V for exploring yield dependence on the electric field

$$\begin{split} E_{total} &= E_{recoil} + n_{eh} eV_b \\ &= E_{recoil} (1 + eV_b / \epsilon_{eff} \cdot Y) \end{split}$$

 \rightarrow 0V mode V_b = 0: Total energy = Recoil energy \rightarrow HV mode V_b \neq 0: Total energy = Recoil energy + NTL energy

Sensors measure E_t $V_{b} \sim 100 V$ E-Field Prompt phonons Luke phonons

IMPACT Analysis Scheme in 1 Slide

Measurement:

Total phonon energy spectrum for events coincident between HVeV and PMT

Simulation:

Geant4 simulation of recoil energy spectrum for events coincident between HVeV and PMT

Systematic Uncertainty:

- Coincidence timing window
- Time of flight window
- Neutron beam energy
- Detector energy calibration
- Impact ionization / Charge trapping
- Fano factor

IMPACT@TUNL Si Yield

IMPACT in Context

- Evidence of continued ionization production down to 100 eVr has and other Si based DM experiments
- using 180 V data

T. Saab \ CIPANP 2022 \ August 31, 2022

II. The SuperCDMS Experiment

SuperCDMS @ SNOLAB

SNOLAB

- 2 km underground (6000 m water equiv.)
- Cleanroom (class 2000 or better)
- Large lab (~5,000 m²)
- Cosmic radiation: muon rate reduced by ~10⁶
- Surface facilities, support staff (>100)

SuperCDMS @ SNOLAB

- Low-radon clean-room
- Collaborating with:
 - Cryogenic Underground TEst facility (CUTE)
 - Rapid-turn around detector testing
 - First data from SuperCDMS SNOLAB towers.

The SuperCDMS SNOLAB Experiment

Seismic Platform

Electron Recoil Backgrounds:

- External and facility: O(0.1 /keV/kg/d)
- Det. setup: O(0.1(Ge)-1(Si) /keV/kg/d)
- Total: O(0.1-1 /keV/kg/d)

Solar v-dominated NR background

T. Saab \ CIPANP 2022 \ August 31, 2022

Facility:

- 6800 m.w.e. overburden
- 15 mK base temperature
- Initial Payload: ~30 kg total 4 towers (2 iZIP, 2 HV)

Vibration isolation:

- Seismic: spring loaded platform
- Cryo coolers: soft couplings (braids, bellows)
- Copper cans: hanging on Kevlar ropes

III. The SuperCDMS Experiment

Dark Matter Search Results ... and future reach

Low Mass: Dark Photon & ALP Searches

- arXiv.2203.08463: A Strategy for Low-Mass Dark Matter Searches with Cryogenic Detectors in the SuperCDMS SNOLAB Facility

Mid Mass: Electron Recoil Dark Matter Searches

- arXiv.2203.08463: A Strategy for Low-Mass Dark Matter Searches with Cryogenic Detectors in the SuperCDMS SNOLAB Facility

High Mass: Nuclear Recoil Dark Matter Searches

T. Saab \ CIPANP 2022 \ August 31, 2022

Expected reach of SNOLAB facility with in-hand detector performance and improved backgrounds

arXiv.2203.08463: A Strategy for Low-Mass Dark Matter Searches with Cryogenic Detectors in the SuperCDMS SNOLAB Facility

Conclusion

... the end

Conclusions

- SuperCDMS detectors aiming to reach "neutrino floor" in 1-10 GeV NR mass range
- Technology being adapted in smaller detectors to search for light dark matter, down to
 - $\mathcal{O}(10)$ MeV via inelastic Nuclear recoil channels (Migdal, Bremsstrahlung)
 - $\mathcal{O}(1)$ MeV via Electron recoil channels and
 - $\mathcal{O}(1)$ eV via Dark Photon Absorption channels
 - With sensitivity to Axion dark matter in the same range \bullet
- SuperCDMS designed a powerful complex cryogenic system that is being installed at SNOLAB
 - NEXUS operates HVeV devices at shallow depth for detector calibration and ERDM searches
 - CUTE is operational deepest dilution fridge in the world
 - Plans for early science reach with CUTE facility \bullet
 - SuperCDMS Detector installation next spring/summer
 - Initial run late 2022 ullet
- SuperCDMS is particularly competitive at low masses, including electronic interactions.
- Stay tuned! Installation of and commissioning of experiment ongoing, exciting news on the horizon.

Backup Slides

SuperCDMS Signal Readout

Rapidly Growing Catalog of Limits and Projections

- Central repository for cataloging data & references, and plotting dark matter limits
 - Includes limits from several "Dark Matter" channels, i.e. Nuclear recoil, Electron recoil, Dark Photon and **Axion** interactions
- Downloadable, runs locally*
 - https://supercdms.slac.stanford.edu/dark-matter-limit-plotter
- Submissions welcome from all experiments
 - https://ufl.qualtrics.com/jfe/form/SV_9KVMNIMhbVg0cPb

*you can even run it on your iPad if you are so inclined, but I don't recommend it

T. Saab \ CIPANP 2022 \ August 31, 2022

Dark Matter Limit Plotter v5.16, updated Sep 10, 2021.

Data can be submitted to the limit plotter via the Data Upload Form.

All Nuclear Recoil limits are scaled to a local dark matter density of 0.3 GeV/c²

References for displayed limits/projections

Show Formatted citation Raw Bibtex

- 1. J.I.Collar, Phys. Rev. D 98, 023005 (2018)
- 2. Arnaud et al., Astroparticle Physics 97, p.54--62 (2018)
- 3. Armengaud, E. et al. "Searching for Low-Mass Dark Matter Particles with a Massive Ge Bolometer Operated Above Ground." Physical Review D 99.8 (2019): n. pag. Cro
 - 4. L. T. Yang et al., Physical Review Letters 123, p.221301 (2019)
 - 5. Adhikari et al. Nature 564, p.83 (2018).
 - 6. Behnke et al., Physical Review D 86, p.052001-1 (2012)
 - 7. Felizardo et al., Journal of Physics: Conference Series 375, p.12011 (2012)
 - nke et al. Astronarticle Physics 90 n 85-92 (2017)

kg-d, Annual modulation
0 kg-d
ncy model
2 merged
231.4 kg-d
-d
-d
ng (Heavy scalar), 1.4e4 kg–d
science run, 1344kg-d
ау
-d
:019)
kg–d
a Xe target

The SuperCDMS Dilution Refrigerator

