LFU measurements in semileptonic b -> clv decays (BelleII + LHCb results)

Koji Hara (KEK)

Sep. 3, 2022 CIPANP2022

Lepton Flavor Universality Test in Semileptonic b→clv Decays

• The Ratio of Br(b \rightarrow clv) is important probe of LFU and new physics effect Especially, ratio of τ to μ ,e could be significantly reduced/enhanced

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)} \quad \text{L=e,} \mu$$

SM R(D) = 0.299±0.003, R(D*)=0.254±0.005 [HFLAV2021]

Latest R(D)-R(D*) vs SM

R(D) and R(D*) Measurements

Belle II and LHCb

• <u>Belle II</u>

- Produce BB pairs via $e^+e^- \rightarrow Y(4s)$
- Only one BB pair in an event
- \circ 4 π detector surrounding the IP
- L = 4.7 x 10^{34} cm⁻²s⁻¹ (WR, June 022)
- Accumulated 424 fb⁻¹ by June 2022
- \circ Target L ~ 6 x 10³⁵ cm⁻²s⁻¹, integrate 50ab⁻¹

• <u>LHCb</u>

- $\circ~$ Experiment dedicated to B physics at LHC
- Many b hadrons produced in pp collisions
- Single arm detector covering the forward region
- Large boost → good separation of vertices: primary vertex, B, D, τ
- \circ Collected Run 1 + Run 2 ~ 9fb⁻¹
- Run 3 just started after the detector upgrade in the long shutdown1

Two experiments are complementary

2022 New Measurement at Belle II

Belle II B \rightarrow D^(*) τv , lv Reconstruction "Tagged" Analyses

- Only a BB pair is produced
- **Reconstruct tag-side B** meson in hadronic or semileptonic decays
- Reconstruct signal-side B meson daughters → neutrinos are "reconstructed" as missing
 - Require B-sig daughters and nothing remained
 - Large missing energy by neutorino(s) in the final state

Hadronic Tag at Belle II (FEI, Full Event Interpretation)

- over 200 boosted decision trees to reconstruct 10000 B decay chains
- $\epsilon_{B+} \sim 0.5\%$, $\epsilon_{B^0} \sim 0.3\%$ at low purity (about 50% increase with respect to the Belle tag)

LFU in Inclusive Semileptonic B Decays

Complementary tests of LFU via inclusive B decays

$$R(X_{\tau/l}) = \frac{\text{Br}(B \to X\tau\nu)}{\text{Br}(B \to Xl\nu)} \begin{array}{l} R(X_{c,\tau/\ell})_{\text{SM}} = 0.223 \pm 0.004 \\ \text{[Phys. Rev. D 92, 054018 (2015)]} \end{array}$$

- one of the unique and high profile goals of Belle II
- Last $b \rightarrow X \tau v$ measurement at LEP
- Challenging due to larger background from less constrained X system

New Bellell Measurement in 2022Test LFU for light leptonsR(

$$(X_{e/\mu}) = \frac{\operatorname{Br}(B \to X e \nu)}{\operatorname{Br}(B \to X \mu \nu)}$$

 $R(X_{e/\mu})_{SM} = 1.006 \pm 0.001$ [M. Rahimi and K. Vos, arXiv:2207.03432]

$R(X_{e/\mu})$ Result

CIPANP2022

Reconstruct •

 $Y(4S) \rightarrow B^{-}_{tag} l^{+} X \text{ and } Y(4S) \rightarrow B^{0}_{tag} l^{+} X$ Tag-side is reconstructed by Hadronic FEI ○ P*₁ > 1.3 GeV/c

BG constrained with off-resonance and wrong charge data •

 $R(X_{e/\mu})^{p_{\ell}^* > 1.3 \,\text{GeV}} = 1.033 \pm 0.010^{\text{stat}} \pm 0.020^{\text{syst}}$

- Most precise BF based LFU test with semileptonic B decays • Events
- agree with the SM value 1.006 ± 0.001 •
- Compatible with exclusive Belle measurement

 $R(D^*e/\mu) = 1.01 \pm 0.01(stat) \pm 0.03(syst)$ [Phys. Rev. D100, 052007 (2019)]

This enables the possibility of LFU inclusively $R(X_{\tau/l}) = \frac{\operatorname{Br}(B \to X\tau\nu)}{\operatorname{Br}(B \to Xl\nu)}$

2022 New Measurements at LHCb

$R(D^{(*)})$ and Other exclusive $R(X_c)$ Measurement at LHCb

- $\tau \rightarrow \mu \nu \nu$ and $3\pi \nu$ modes are used [PRL 115, 111803 (2015)], [PRL 120, 171802 (2018) and PRD 97, 072013 (2018)]
- Large boost \rightarrow displaced vertices \rightarrow
 - B momentum direction
 - τ momentum direction for $\tau \rightarrow 3\pi$ \rightarrow Enable kinematical reconstruction
- Other b hadrons are also produced

 $R(J/\psi) = \frac{\text{Br}(Bc \rightarrow J/\psi\tau\nu)}{\text{Br}(Bc \rightarrow J/\psi lu)} \text{ [PRL120, 121801(2018)]}$

New measurement in 2022

$R(\Lambda_c)$ Measurement at LHCb

2500F

2000

1500

1000

500

0

Candidates / (0.17)

LHCb

3 fb⁻¹

0.2

0.4

[PRL 128, 191803 (2022)]

- First LFU test in a baryonic $b \rightarrow clv$ decay
- Initial state spin $\frac{1}{2} \rightarrow \text{different BSM effect}$

Signal extracted from fit to

BDT output, τ decay time and $q^2 \equiv (P_{Ab} - P_{Ac})^2$

Normalized to $\Lambda_b^0 \rightarrow \Lambda_c 3\pi$ decays, with ext. input Br $(\Lambda_b^0 \rightarrow \Lambda_c 3\pi)/Br(\Lambda_b^0 \rightarrow \Lambda_c lv)$

$$R(\Lambda_c) = \frac{\operatorname{Br}(\Lambda_b \to \Lambda_c \tau \nu)}{\operatorname{Br}(\Lambda_b \to \Lambda_c 3\pi)} \cdot \frac{\operatorname{Br}(\Lambda_b \to \Lambda_c 3\pi)}{\operatorname{Br}(\Lambda_b \to \Lambda_c l \nu)}$$

 $R(\Lambda_c) = 0.242 \pm 0.026(stat) \pm 0.040(syst) \pm 0.059 (ext)$

Consistent within 1 σ with R(Λ_c)_{SM} = 0.324 \pm 0.004 [F.U.Bernlochner et al, PRD99, 055008 (2019)]

Future Prospect

 \bullet \bullet \bullet

Belle II Future Prospect

- Belle II is in the long shutdown 1 by 2023
 - Replace with full PXD and maintenance/improvement work
- Upgrade of the detector and machine in the long shutdown 2
- The ultimate goal of Belle II by >2030 is an integrated luminosity of 50 ab⁻¹
- R uncertainties will go down to a few %

SuperKEKB Luminosity Projection

Snowmass white paper "Belle II physics reach and plans for the next decade and beyond" https://www.slac.stanford.edu/~mpeskin/Snowmass2021/BelleIIPhysicsforSnowmass.pdf

LHCb Future Prospect

- LHCb just started run3 after Upgrade 1
- Integrate 300fb⁻¹ after upgrade II
- Measure R at a few % level
 - Also with more hadronic states
 D, Ds(*) etc...

Other Measurements

Polarizations of τ

 $P_{\tau}(D^{(*)}) = \frac{\Gamma^{+} - \Gamma^{-}}{\Gamma^{+} + \Gamma^{-}}$ $P_{\tau}(D)_{SM} = 0.34 \pm 0.03 \text{ [R. Alonso et al., PRD95, 093006 (2017)]}$ $P_{\tau}(D^{*})_{SM} = -0.47 \pm 0.04 \text{ [D. Bigi et al., JHEP 11, 061 (2017)]}$

- Important to distinguish possible New Physics types such as vector, scalar, tensor types
- So far only one Belle Pτ(D*) measurement

 $P_{\tau}(D^*) = -0.38 \pm 0.51 (\text{stat})^{+0.21}_{-0.16} (\text{syst})$ [PRL118, 211801 (2017) PRD97, 012004 (2018)]

 \rightarrow Pt(D*) expected errors at Belle II : ± 0.20 at 5ab⁻¹, ± 0.07 @50ab⁻¹ [The Belle II Physics Book, PTEP 2019, 123C01]

Full angular analysis at LHCb and BelleII are also possible and discussed in [D. Hill et al., JHEP11, 133 (2019)]

- Forward-backward asymmetry in $B \rightarrow D^* ev$ and $B \rightarrow D^* \mu v$
 - C. Bobeth et al. arXiv 2104.02094 pointed out ~ 4 σ tension of e-µ universality in the Belle data of Phys. Rev. D100, 052007 (2019) and prediction
 - Additional and more precise measurements will provide interesting checks

Summary

- LFU measurements in b→clv decays are very important probe to test SM and search for the new physics beyond SM
- Deviation from the SM in $R(D)-R(D^*)$ is at about 3 σ

In 2022,

- BelleII report the first inclusive $R(X_{e/\mu})^{p^*l>1.3GeV}$ measurement with 2.2% precision
 - World-leading BF based LFU test with semileptonic B decays
 - $_{\odot}~$ This enables the possibility to inclusively measure $R(X_{\tau/l})$
- LHCb extend the measurement to the first baryonic decay mode for $R(\Lambda_c)$ \circ First observation of $\Lambda_b \rightarrow \Lambda_c \tau v$ with 6 σ
- LHCb and Belle II will provide more interesting results in future
 - With uncertainties of a few % expected in > 2030
 - Not only R measurements but also polarizations, angular analyses

Lepton ID Calibration

- calibrated in well controlled, data-driven channels
- Most corrections are close to 1.0, efficiencies are measured to a precision of O(0.1 2%)

R(Λ_c) Systematic Errors

$R(\Lambda_c) = 0.242 \pm 0.026(stat) \pm 0.040(syst) \pm 0.059 (ext)$

• Error for
$$\kappa(\Lambda_c) = \frac{\text{Br}(\Lambda_b \to \Lambda_c \tau \nu)}{\text{Br}(\Lambda_b \to \Lambda_c 3\pi)}$$

Source	$\delta \mathcal{K}(\Lambda_c^+) / \mathcal{K}(\Lambda_c^+) [\%]$
Simulated sample size	3.8
Fit bias	3.9
Signal modelling	2.0
$\Lambda_b^0 \to \Lambda_c^{*+} \tau^- \overline{\nu}_{\tau}$ feeddown	2.5
$D_s^- \to 3\pi Y$ decay model	2.5
$\Lambda_b^{\bar{0}} \to \Lambda_c^+ D_s^- X, \Lambda_b^0 \to \Lambda_c^+ D^- X, \Lambda_b^0 \to \Lambda_c^+ \overline{D}{}^0 X$ background	4.7
Combinatorial background	0.5
Particle identification and trigger corrections	1.5
Isolation BDT classifier and vertex selection requirements	4.5
D_s^- , D^- , \overline{D}^0 template shapes	13.0
Efficiency ratio	2.8
normalization channel efficiency (modelling of $\Lambda_b^0 \to \Lambda_c^+ 3\pi$)	3.0
Total uncertainty	16.5

τ Polarization Measurement at Belle

[PRL118, 211801 (2017) PRD97, 012004 (2018)]

- Hadronic tag
- Two body tau decays : $\tau \rightarrow \pi \nu$, $\rho \nu$
 - Helicity angle sensitive to the tau polarization
- $P_{\tau}(D^*)_{SM} = -0.497 \pm 0.013$ [Tanaka, Watanabe, PRD 87, 034028 (2013)]

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\text{hel}}} = \frac{1}{2} \left(1 + \boldsymbol{\alpha} \cdot \boldsymbol{\mathcal{P}}_{\tau} \cos\theta_{\text{hel}} \right)$$
$$\alpha = \begin{cases} 1 & \text{for } \tau \to \pi^{-}\nu \\ 0.45 & \text{for } \tau \to \rho^{-}\nu \end{cases}$$

BELLE

$$\begin{split} R(D^*) &= 0.270 \pm 0.035(\text{stat})^{+0.028}_{-0.025}(\text{syst}), \\ P_{\tau}(D^*) &= -0.38 \pm 0.51(\text{stat})^{+0.21}_{-0.16}(\text{syst}), \\ \text{(R(D^*) included in the HFLAV avg)} \end{split}$$

R(D*) with $\tau \rightarrow \mu v v$ by LHCb

[PRL 115, 111803 (2015)]

- 3.0 fb⁻¹ Data
- $B^0 \rightarrow D^* \tau v, \tau \rightarrow \mu v v$
 - 3D Fit to (Missing mass)², E_{μ}^{*} , q^{2}
- Primary and B vertices $\rightarrow P_{B}$ direction
- $|P_B|$ is approximated by $(P_B)_z = m_B/m_{D^*u} (P_{D^*u})_z$

R(D*) with $\tau \rightarrow 3\pi v$ by LHCb

$R(J/\psi)$ Measurement at LHCb Measurement at LHCb

[PRL120, 121801(2018)]

- 3.0 fb⁻¹ Data
- Measure

$$R(J/\psi) = \frac{Br(B_c^+ \to J/\psi \tau \nu)}{Br(B_c^+ \to J/\psi \mu \nu)}$$

- Same method as muonic R(D*) to estimate P_{Bc}
- 3D fit to (missing mass)², B_c decay time, category index Z for (q², E_{μ^*})bins

$$\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \tau^+ \nu_{\tau})}{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu})}$$

 $= 0.71 \pm 0.17(\text{stat}) \pm 0.18(\text{syst}).$

 2σ from SM expectation 0.25-0.28