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Basis Light-front Quantization

qFinding spectrum using light-front 
Hamiltonian

qAdopting basis according to the symmetry 
of system

qAdvantages: 
§ Boost Invariant Amplitude
§ Parton Interpretation
§ Fully relativistic 
§ Moore’s Law
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General Procedures of BLFQ

qDerive LF-Hamiltonian from Lagrangian
qConstruct basis states         , and truncation 

scheme
qEvaluate Hamiltonian in the basis
qDiagonalize Hamiltonian and obtain its 

eigen states and their LF-amplitudes 
qEvaluate observables using LF-amplitudes
qExtrapolate to continuum limit      

Orlando, FL
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Heavy Quarkonium in BLFQ
qEffective Hamiltonian

• Inspired by holographic AdS/QCD.

• Two parameters fitted to spectra.
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Heavy Quarkonia Spectra

Orlando, FL

�M = 52 MeV �M = 50 MeV
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Visualizing LFWF 
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BLFQ LFWF predictions

qDecay constants

qAlso predict radii and charge form factor!

Orlando, FL
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Dipole picture of diffractive processes 
qThe exclusive VM production amplitude:

• ΨE : LFWF of vector meson
• Ψ : Photon LFWF
• : dipole cross section
qDescription of vector meson on the Light-front 

is the KEY! 
Orlando, FL
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HERA: cross section
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J/Ψ from Pb-Pb UPC at LHC
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GC et al., PLB 769, 477, 2017 ALICE, 2013, 2017.
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LHCb, 2018
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ϒ(1s) from pp UPC at LHC
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LHCb, 2015
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Cross section ratio
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GC et al., PLB 769, 477, 2017
ZEUS, 2016.
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Cross section ratio, Upsilons
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Introduction

• Goals: simple-function charmonium LFWFs 
with few parameters!

i. Approximation to QCD.
ii. Retain more symetries.
iii. Matching the NR limit.
iv. Emphsis on decay width.
• We designed LFWFs for 𝜂c , J/𝜓, 𝜓’ and 
𝜓(3770).

Orlando, FL09/03/22



Basis functions
• LF holography/Basis LF Quantization Hamiltonian.

i. Two parameters: mq and 𝜅.
ii. One-gluon interactions were treated perturbatively. 
• The basis function representation. 

Orlando, FL

Li et al., PLB 758, 118 (2016)
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Basis functions
• Small basis for charmonium states:

Orlando, FL09/03/22



J/𝜓 as a 1-- state

• We assume a 100% LF-1S state for J/𝜓.
• Matching J/𝜓 decay constant to the PDG value: 

• We fix mc and 𝜅 using the J/𝜓 decay constant. 

Orlando, FL
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𝜂c as a 0-+  state

• 𝜂c predominantly LF-1S+LF-2S and LF-1P. 

• Basis coeffecients are determined using the 
diphoton decay width 𝚪(𝜂c -> 𝛾𝛾).

Orlando, FL
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𝜓’ as a 1-- state

• A mix of LF-1S and LF-2S states for 𝜓’.

• Basis coeffecients are determined using the 
dilepton decay constant.
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𝜓(3770) as a 1-- state

• A mix of LF-1S, LF-2S, LF-1D states for 𝜓(3770), 
LF-1D is dominating.

• Basis coeffecients are determined by requiring 
orthogonality between 𝜓’ and 𝜓(3770). 
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LFWFs by design
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The mass spectrum
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Masses calculated from small-basis LFWFs should 
be regarded as Estimated!
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• Defined in terms of the slope of the charge form 
factor at zero momentum transfer.

• J/𝜓, 𝜓’ and 𝜓(3770) radii consistent with BLFQ 
calculations. 

• A large size 𝜂c! 

The charge radii

Orlando, FL

Li et al., PLB 758, 118 (2016)
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Parton Distribution Functions (PDFs)
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J/𝜓 production at HERA
γ*pJ/ψp
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J/𝜓 production at LHC
Pb+PbPb+Pb+J/Ψ sNN =2.76TeV
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𝛾*𝛾 -> 𝜂c Transition Form Factor
J+ J⊥ Fηc γ(Q2, 0)

Fηc γ(0, Q2)

BaBar
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Summary
• 𝜂c , J/𝜓, 𝜓’ and 𝜓(3770) LFWFs in two 

approaches: BLFQ (HPC), small-basis 
(analytical).

• Physical observables calculated: 
i. Masses and charge radii.
ii. PDFs.
iii. J/𝜓 production at HERA and LHC.
iv. 𝜂c diphoton transition form factor. 
• Outlook: analytical LFWFs with 

simultaneous global analysis.
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Basis Function

• Transverse:

• Longitudinal:
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Sample Basis Function
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Mirror Parity and Chargeconjugation 
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J/𝜓 Decay Constant
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ϒ(1s) in γp at LHC
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GC et al., in preparation
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Equal time vs. Light-front Quantization

t ≡ x0 t ≡ x+ = x0 + x32 HAMILTONIAN DYNAMICS 19

Figure 1: Dirac’s three forms of Hamiltonian dynamics.

The two four-volume elements are related by the Jacobian J (x̃) = ||∂x/∂x̃||, particularly
d4x = J (x̃) d4x̃. We shall keep track of the Jacobian only implicitly. The three-volume
element dω0 is treated correspondingly.

All the above considerations must be independent of this reparametrization. The
fundamental expressions like the Lagrangian can be expressed in terms of either x or x̃.
There is however one subtle point. By matter of convenience one defines the hypersphere
as that locus in four-space on which one sets the ‘initial conditions’ at the same ‘initial
time’, or on which one ‘quantizes’ the system correspondingly in a quantum theory. The
hypersphere is thus defined as that locus in four-space with the same value of the ‘time-
like’ coordinate x̃0, i.e. x̃0(x0, x) = const. Correspondingly, the remaining coordinates
are called ‘space-like’ and denoted by the spatial three-vector x̃ = (x̃1, x̃2, x̃3). Because
of the (in general) more complicated metric, cuts through the four-space characterized
by x̃0 = const are quite different from those with x̃0 = const. In generalized coordinates
the covariant and contravariant indices can have rather different interpretation, and one
must be careful with the lowering and rising of the Lorentz indices. For example, only
∂0 = ∂/∂x̃0 is a ‘time-derivative’ and only P0 a ‘Hamiltonian’, as opposed to ∂0 and P 0

which in general are completely different objects. The actual choice of x̃(x) is a matter
of preference and convenience.

2D Forms of Hamiltonian Dynamics

Obviously, one has many possibilities to parametrize space-time by introducing some
generalized coordinates x̃(x). But one should exclude all those which are accessible by a
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Dirac (1949)
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