<u>Beryllium-7 Electron Capture</u> in <u>Superconducting Tunnel Junctions:</u> The <u>BeEST</u> Sterile Neutrino Search

Stephan Friedrich

Lawrence Livermore National Laboratory for the BeEST Collaboration

LLNL-PRES-836503

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52- 07NA27344.

Outline

- 1) Dark Matter and Sterile Neutrinos
- 2) Superconducting Tunnel Junction (STJ) Radiation Detectors
- 3) The BeEST Sterile Neutrino Search
- 4) Material Effects in Superconducting (STJ) Sensors
- 5) Next: Increased Sensitivity with Arrays and New Materials

Tabletop BSM Physics.

Dark Matter

Galaxy Rotation Curves

Merging "Bullet Cluster"

Sterile Neutrinos

Questions in Cosmology:

• What is dark matter?

Dark Mattern1 inst

• Why is there more matter than antimatter in the universe?

ournal of Cosmology and Astroparticle Physics

A White Paper on keVisterile neutrino

Questions in Particle Physics:

- What is nature of neutrinos mass?
- Do right-handed neutrinos exist?

Sterile neutrinos are an appealing dark matter candidate.

But they are well-motivated without dark matter, too.

Merle and S. Mertens

1) (Active) neutrinos exist 2) (Sterile) neutrinos could explain <u>several</u> big questions

How to Find Something that

Doesn't emit light
 Doesn't absorb light
 Doesn't interact (except through its mass)?

How to Find Something that

Doesn't emit light
 Doesn't absorb light
 Doesn't interact (except through its mass)?

Use $|p_{neutrino}| = |p_{Li-7}|$ to search for missing momentum in nuclear decay of ⁷Be.

Why ⁷Be?

Why⁷Be?

- 1) 2-body Electron Capture decay ⁷Be + $e^- \Rightarrow {}^7Li + v$ \Rightarrow Monochromatic recoil
- 2) Long half life of 53 days \Rightarrow Easy handling
- 3) Low Z = 7
 ⇒ Manageable calculations
- 4) Large Q = 861 keV
 - \Rightarrow "Large" recoil signal E = 56 eV

Why Not ⁷Be?

- 1) 10% EC decay into excited state ⁷Li*
 - \Rightarrow Doppler-broadened secondary peaks

Superconducting Tunnel Junction Detector

- 1) High energy resolution
- 2) High speed, >1000 counts/s
 - Sensitive to phonons

3)

Use $|p_{neutrino}| = |p_{Li-7}|$ to search for missing momentum in nuclear decay of ⁷Be.

2) Semiconducting vs Superconducting Detectors

2) Semiconducting vs Superconducting Detectors

Superconducting Tunnel Junction (STJ) Radiation Detectors

Small superconducting energy gap ($\Delta \approx 1 \text{meV}$) \Rightarrow High resolution (<10 eV FWHM) Short excess charge life-time (~µs) \Rightarrow High count rate (>1,000 counts/s/pixel)

STJ Soft X-ray Detectors

STJs were initially developed for high-resolution spectroscopy with soft X-rays where lines are closely spaced.

STJ Characterization with Pulsed UV Laser

Pulsed 355 nm (3.5eV) laser at 5,000 Hz

- \Rightarrow Comb of peaks at integer multiples of 3.5 eV
- \Rightarrow Energy resolution between ~1.5 and ~2.5 eV FWHM
- \Rightarrow Only quadratic non-linearity
- \Rightarrow Calibration accuracy of order ±1 meV in 1 hour

3) A Sterile Neutrino Search with Superconducting Tunnel Junctions

RIUMF

 $\tau_{1/2}$ = 53 days, Q = 861 keV

3) A Sterile Neutrino Search with Superconducting Tunnel Junctions

RIUMF

Implant ⁷Be into STJ detectors.

 $\tau_{1/2}$ = 53 days, Q = 861 keV

A,

Beryllium-7 Electron Capture in Superconducting Tunnel Junctions

Implant ⁷ Be	Detect ⁷ Be Decay		
at TRIUMF	at LLNL		
⁷ Be	STJ 7Li Si		

at LLNL Si

 $^{7}\text{Be} + \text{e-} \rightarrow ^{7}\text{Li} + v_{e}$ with $v_{e} = \Sigma |U_{ea}|^2 v_{active}$

Measure electron capture decay of ⁷Be to ⁷Li.

2-body decay \Rightarrow Monochromatic recoil (in principle)

Beryllium-7 Electron Capture in Superconducting Tunnel Junctions

at TRIUMF

Detect ⁷Be Decay at LLNL

⁷Be + e- \rightarrow ⁷Li + v_{e-} with v_{e-}= $\Sigma |U_{ea}|^2 v_{active}$

Measure electron capture decay of ⁷Be to ⁷Li.

2-body decay \Rightarrow Monochromatic recoil (in principle)

<u>Be</u>-7 Electron Capture in <u>ST</u>Js: The <u>BeEST</u> Experiment

⁷Be + e-
$$\rightarrow$$
 ⁷Li + v_{e-}
with v_{e-}= Σ |U_{ea}|²v_{active} + |U_{es}|²v_{sterile}

Heavy sterile neutrinos would reduce ⁷Li recoil energy.

Look for shifted peaks in the recoil spectrum.

The BeEST Sterile Neutrino Experiment

Calibrate STJ with pulsed laser.

Four peaks due to K- and L- capture into ⁷Li ground and excited state

The BeEST Sterile Neutrino Experiment

- 4 primary peaks
 - 2 x K-capture, 2x L-capture
 - to ⁷Li ground state and to ⁷Li*
- 4 high-energy tails
 Shake-off effects
- 2 low-energy tails – (Partial) Auger e- energy loss
- 1 broad background
 478 keV γ's in substate

L/K Ratio = 0.070(7)

PRL 125, 032701 (2020)

The BeEST Sterile Neutrino Experiment

Data with Hypothetical Sterile v Signal

Exclusion Plot

10x improvement with 1 pixel at 10 counts/s.

PRL 126, 021803 (2021)

The BeEST in Context

4) Why Are The Capture Peaks so Broad?

Exclusion Plot

Data with Hypothetical Sterile v Signal

PRL **126**, 021803 (2021)

Density Functional Theory (DFT) Simulations of Li 1s Energy Shift

Li Configuration:	Substitutional Li	1 Li Intersitital	2 Li Intersititals	3 Li Intersititals	Li _{Ta} -V _{Ta} Complex
1s Energy Shift:	0 (reference case)	1.18 eV	1.58 eV	1.30 eV	1.67 eV
Formation E:	1.23 eV	4.07 eV	7.63 eV	11.23 eV	2.50 eV
Binding E / Li atom	-	-	-0.26 eV	-0.33 eV	-1.53 eV
vs. separate interstitials					

3.3 Å 3.3 Å 3.4 Å Li 3.6 Octahedral site 10 Octahedral site

Simple configuration changes can alter Li 1s energy levels by >1 eV.

A. Samanta et al., submitted to Phys. Rev. Applied and arXiv: 2206.00150

DFT Simulations in Disordered / Amorphous Ta

Li at Grain Boundaries

Li in in Amorphous Ta

Even extreme disorder only shifts 1s levels by ~2 eV and cannot explain the observed 6.7 eV broadening

DFT Simulations of Li 1s Energy Shifts due to Impurities

(Again, much less than observed experimentally.)

DFT Simulations of Li 2s Energies in bcc Ta

Li 2s Levels in Ta 5d Band

L-Capture is Broader than K-Capture Peak

Hybridization of Li 2s with Ta 5d-6s band with explains why L-capture peak is broader than K-capture peak.

Material effects matter but *cannot* explain entire observed broadening.

5) Next: Bigger Detector Arrays, Higher ⁷Be Dose

Improved Sensitivity with Ta-STJ Arrays

Next ⁷Be implantation on 09/22/22

112-pixel Ta-STJ Array

Next: New Materials

Ta-based Arrays 1. 1. 1. 1. 1. 1. 1. Sterile Neutrino Admixture U 1000 Admixture U 1000 1 10-2 10-2 10-2 **125**, 032701 (2020) PRL PRL 126, 021803 (2021) 20237 10^{-8} 100 10 1000 Energy [keV]

Improved Sensitivity with Ta-STJ Arrays

Next ⁷Be implantation on 09/22/22

STJ Detectors from Different Materials

Distinguish material effects from BSM physics

The BeEST Sterile Neutrino Search

⁷Be in STJ detectors \Rightarrow Missing Momentum Search

2 eV FWHM and 2-body decay \Rightarrow High Sensitivity

1STJ at 10 counts/s \Rightarrow Exclusion to O(10⁻⁴)

- High resolution: ~2 eV at 100 eV
- High speed: >1,000 counts/s/pixel
- No quenching

- Accurate laser calibration
- Material effects non-negligible

- O(10⁻⁷) with 128-pixel arrays
- New Al- and Nb-STJs ⇒ Separate
 BSM physics from material effects

Thank You!

Electron Capture Xavier Mougeot (CEA)

Back-up Slides

Different STJ Detectors

Current Geometry Next Geometry Different Materials Ta-STJ Detector Si Collimator Nb-STJ Detector Si Collimator Al-Al₂O₃-Al Та Ta Ta AI-AI₂O₃-AI Та Та Та Au SiO₂ Si₃N₄ Membrane Al-STJ Detector Si Substrate Si Substrate

Complementary experiments and simulations of different materials might separate BSM physics from material effects.

Competing Sterile Neutrino Experiments

³H Beta Decay

KATRIN = *KA*rlsruhe *TRI*tium *N*eutrino Expt

ECHo = Electron Capture in Ho

We are more sensitive <u>and</u> much cheaper than competing experiments

(which admittedly are not optimized for sterile neutrinos.)

Experimental Limits on Sterile Neutrino Dark Matter

Limits from Nuclear Decays

Look (in vain) for kink in beta spectrum

Limits from Astronomy

Look (in vain) for decay X-rays from galaxies

So we're looking for \sim keV neutrinos, 10^{-12} to 10^{-3} of which are mixed to active neutrinos.

Astronomy limits depend on underlying assumptions and models.

Adiabatic Demagnetization Refrigerators (ADRs)

"Wet" Cryodetector ADR (2001)

Commercial "Dry" ADR (2016)

ADR refrigerators for automated cooldown to <0.1K are commercially available (~\$500k).

STJ Electronics

- Stable biasing (to $\pm \text{few } \mu \text{V}$)
- Voltage bias (dc load line <100 Ω)

32-channel STJ Preamplifier (XIA)

- Low noise, stable biasing, dc voltage bias
- Computer-controlled
- 32 preamplifiers per board

Specialized preamplifiers for STJs are commercially available.

STJ Characterization at High Speed

Nb-STJs ($\tau_{decay} \approx \text{few } \mu \text{s}$)

Ta-STJs ($\tau_{decay} \approx$ few 10 µs)

STJ Signal:

 Single exponential decay constant

DSP pulse processing:

- Trapezoidal filter
- Pile-up rejection

STJs detectors can be operated at rates well above 1000 counts/s per pixel.

Nice, but only at low energies.

Low-Energy Nuclear Spectroscopy of ^{235m}U

- Absorb ^{235m}U from ²³⁹Pu decay in STJ
- Measure ^{235m}U decay with 2 eV resolution
- Result: ^{235m}U energy: 76.737 ± 0.018 eV

