Evgeny Epelbaum, Ruhr University Bochum

14th Conference on the Intersections of Particle & Nuclear Physics (CIPANP2022), Lake Buena Vista, Florida, USA, Aug 29 – Sep 4, 2022

Chiral EFT for low-energy nuclear physics

Introduction ChEFT for NN scattering Beyond the two-nucleon system Precision calculation of radii of $A \le 4$ nuclei Summary and outlook

Why (precision) nuclear physics?

After the discovery of Higgs boson, the strong sector remains the only poorly understood part of the SM!

Interesting topic on its own. Some current frontiers:

- the nuclear chart and limits of stability FAIR, GANIL, ISOLDE,...
- EoS for nuclear matter (gravitational waves from n-star mergers) LIGO/Virgo,...
- hypernuclei (neutron stars) JLab, JSI/FAIR, J-PARC, MAMI, NICA, ...

But also highly relevant for searches for BSM physics, e.g.:

- direct Dark Matter searches (WIMP-nucleus scattering)
- searches for $0\nu\beta\beta$ decays
- searches for nucleon/nuclear EDMs
- proton/deuteron radius puzzle (complementary experiments with light nuclei...)

→ need a reliable approach to nuclear structure with quantified uncertainties: Effective Field Theory

Chiral Effective Field Theory

Re-summation of ladder diagrams

Certain terms in the amplitude must be re-summed (ladder-type graphs enhanced Weinberg '90, '91)

$$T_{\text{LO}} = V_0 + V_0 G V_0 + V_0 G V_0 G V_0 + \dots = \sum_{n=0}^{\infty} V_0 (G V_0)^n \qquad \boxed{\mathbf{v}_0 \cdots \mathbf{v}_0}$$

$$T_{\text{NLO}} = T_{\text{LO}} + \sum_{m,n=0}^{\infty} (V_0 G)^m V_2 (V_0 G)^n + \underbrace{\mathcal{O}((V_2)^2)}_{\text{automatically included when solving}}_{T_{\text{NLO}} = (V_0 + V_2) + (V_0 + V_2) G T_{\text{NLO}}}$$

Re-summation of ladder diagrams

Certain terms in the amplitude must be re-summed (ladder-type graphs enhanced Weinberg '90, '91)

$$T_{\text{LO}} = V_0 + V_0 G V_0 + V_0 G V_0 G V_0 + \dots = \sum_{n=0}^{\infty} V_0 (G V_0)^n \qquad \boxed{\mathbf{v}_0 \ \mathbf{v}_0 \ \dots \mathbf{v}_0}$$

$$T_{\text{NLO}} = T_{\text{LO}} + \sum_{m,n=0}^{\infty} (V_0 G)^m V_2 (V_0 G)^n + \underbrace{\mathcal{O}((V_2)^2)}_{automatically included when solving}_{T_{\text{NLO}} = (V_0 + V_2) + (V_0 + V_2) G T_{\text{NLO}}}$$

Divergent integrals in the Lippmann-Schwinger equation are usually regularized with a cutoff Λ :

- the "RG invariant" approach with $\Lambda \gg \Lambda_b$: $T \sim 1 + \Lambda + \Lambda^2 + \ldots = (1 \Lambda)^{-1}$ van Kolck, Long, Yang, …
 - criticized in EE, Gegelia, EPJA 41 (09) 341; EE, Gasparyan, Gegelia, Meißner, EPJA 54 (18) 186
 - in fact, not RG-invariant beyond LO Ashot Gasparyan, EE, to appear
- finite- Λ EFT with $\Lambda \lesssim \Lambda_b \sim 600$ MeV Lepage, EE, Gegelia, Meißner, Reinert, Entem, Machleidt, ...
 - phenomenologically successful; approximate Λ-independence verified a posteriori
 - renormalizability (in the EFT sense) has been rigorously proven to NLO using the BPHZ subtraction method (forest formula)
 Ashot Gasparyan, EE, PRC 105 (2022) 024001; to appear

Chiral EFT expansion of the nuclear forces

Weinberg, van Kolck, Friar, Kaiser, EE, Krebs, Bernard, Meißner, Girlanda, ...

	$LO(Q^0)$	NLO (Q^2)	$N^{2}LO(Q^{3})$	$N^{3}LO(Q^{4})$	$N^4LO(Q^5)$
2NF	•• ×2	↓↓ × 7			
3NF					
4NF	_	_	_	•• +	_

ACCURACY ... but also complexity and the number of LECs...

- πN LECs taken from the Roy-Steiner analysis \Rightarrow long-range topologies are pure predictions
- Loop diagrams in the 3NF calculated using dimensional regularization

Chiral EFT expansion of the nuclear forces

Weinberg, van Kolck, Friar, Kaiser, EE, Krebs, Bernard, Meißner, Girlanda, ...

	$LO(Q^0)$	NLO (Q^2)	$N^{2}LO(Q^{3})$	$N^{3}LO(Q^{4})$	$N^4LO(Q^5)$
2NF	↓↓ × 2	¢¢ 🗡7			
3NF	_	_	CD CE		
4NF	_	_	_	•• •• ••	_

ACCURACY ... but also complexity and the number of LECs...

- πN LECs taken from the Roy-Steiner analysis \Rightarrow long-range topologies are pure predictions
- Loop diagrams in the 3NF calculated using dimensional regularization

Chiral EFT for NN scattering

 Statistically perfect description of our own database of mutually consistent scattering data (2124 pp and 2935 np data below E_{lab} = 290 MeV) Reinert, Krebs, EE, PRL 126 (21) 092501

high-precision "realistic" potentials				_	ldaho χEFT		Bochum SMS χEFT	
Nijm I	Nijm II	Reid93	CD Bonn		$N^{4}LO^{+}_{450}$	$N^4LO^+_{500}$	$N^4 LO^+_{450}$	$\mathbf{N}^{4}\mathbf{LO}_{500}^{+}$
1.061	1.070	1.078	1.042		2.019	1.203	1.013	1.015

• Results for the np total cross section and the error budget:

• Our determination of $g_{\pi NN}$ from NN data, $g_{\pi NN} = 13.23 \pm 0.04$, is to be compared with PSI data $g_{\pi NN} = 13.10 \pm 0.10$ (from $\epsilon_{1s}^{\pi H}$, $\epsilon_{1s}^{\pi D}$) and $g_{\pi NN} = 13.24 \pm 0.10$ (from $\Gamma_{1s}^{\pi H}$) Hirtl et al.'21

Beyond the NN system

	$LO(Q^0)$	NLO (Q^2)	$N^2LO(Q^3)$	$N^{3}LO(Q^{4})$	$N^4LO(Q^5)$
2NF	•• ×2	↓↓ × 7			
3NF			CD CE		
4NF	_	_	_	♦♦♦ +	_

Beyond the NN system

	$LO(Q^0)$	NLO (Q^2)	$N^2LO(Q^3)$	$N^{3}LO(Q^{4})$	$N^4LO(Q^5)$
2NF	•• <u>2</u>	↓↓ × 7			
3NF	_		CD CE		
4NF	_	_	_	∳∳ ∳∳ +	_

need to be re-derived using consistent cutoff regularization

Using DimReg to calculate loop diagrams in the 3NF + cutoff regularization in the dynamical equation violates the chiral symmetry.

• Using DimReg everywhere: I.h.s. = r.h.s. \Rightarrow consistent

Using DimReg to calculate loop diagrams in the 3NF + cutoff regularization in the dynamical equation violates the chiral symmetry.

- Using DimReg everywhere: I.h.s. = r.h.s. \Rightarrow consistent
- Calculate the iterative diagram on the r.h.s. using cutoff regularization:

$$V_{2\mathrm{N},\Lambda}^{1\pi} G_0 V_{3\mathrm{N},\Lambda}^{2\pi} = -\Lambda \frac{g_A^4}{96\sqrt{2\pi^3} F_\pi^6} \left[\underbrace{\tau_1 \cdot \tau_3 (\overrightarrow{q}_3 \cdot \overrightarrow{\sigma}_1)}_{absorbable \ into \ c_D: \ \checkmark} - \underbrace{\frac{4}{3} (\tau_2 \cdot \tau_3 - \tau_1 \cdot \tau_3) (\overrightarrow{q}_2 \cdot \overrightarrow{\sigma}_3)}_{violates \ chiral \ symmetry...} \right] \frac{\overrightarrow{q}_3 \cdot \overrightarrow{\sigma}_3}{q_3^3 + M_\pi^2} + \dots$$

Using DimReg to calculate loop diagrams in the 3NF + cutoff regularization in the dynamical equation violates the chiral symmetry.

- Using DimReg everywhere: I.h.s. = r.h.s. \Rightarrow consistent
- Calculate the iterative diagram on the r.h.s. using cutoff regularization:

$$V_{2\mathrm{N},\Lambda}^{1\pi} G_0 V_{3\mathrm{N},\Lambda}^{2\pi} = -\Lambda \frac{g_A^4}{96\sqrt{2\pi^3} F_\pi^6} \left[\underbrace{\tau_1 \cdot \tau_3(\overrightarrow{q}_3 \cdot \overrightarrow{\sigma}_1)}_{absorbable \ into \ c_{\mathcal{D}}: \ \checkmark} - \underbrace{\frac{4}{3} (\tau_2 \cdot \tau_3 - \tau_1 \cdot \tau_3)(\overrightarrow{q}_2 \cdot \overrightarrow{\sigma}_3)}_{violates \ chiral \ symmetry...} \right] \frac{\overrightarrow{q}_3 \cdot \overrightarrow{\sigma}_3}{q_3^3 + M_\pi^2} + \dots$$

• The problematic divergence cancels if $V_{3N}^{2\pi-1\pi}$ is calculated using cutoff regularization.

Using DimReg to calculate loop diagrams in the 3NF + cutoff regularization in the dynamical equation violates the chiral symmetry.

- Using DimReg everywhere: I.h.s. = r.h.s. \Rightarrow consistent
- Calculate the iterative diagram on the r.h.s. using cutoff regularization:

$$V_{2\mathrm{N},\Lambda}^{1\pi} G_0 V_{3\mathrm{N},\Lambda}^{2\pi} = -\Lambda \frac{g_A^4}{96\sqrt{2\pi^3} F_\pi^6} \left[\underbrace{\tau_1 \cdot \tau_3 (\overrightarrow{q}_3 \cdot \overrightarrow{\sigma}_1)}_{absorbable \ into \ \mathbf{c}_{\mathrm{D}}: \ \mathbf{v}} - \underbrace{\frac{4}{3} (\tau_2 \cdot \tau_3 - \tau_1 \cdot \tau_3) (\overrightarrow{q}_2 \cdot \overrightarrow{\sigma}_3)}_{violates \ chiral \ symmetry...} \right] \frac{\overrightarrow{q}_3 \cdot \overrightarrow{\sigma}_3}{q_3^3 + M_\pi^2} + \dots$$

• The problematic divergence cancels if $V_{3N}^{2\pi-1\pi}$ is calculated using cutoff regularization.

 \Rightarrow 3NF and currents beyond N²LO must be re-derived using symmetry-preserving regulator

- e.g., the higher-derivative [Slavnov '71] or gradient flow regularization [Lüscher '10]
- a new path-integral approach to derive nuclear forces and currents [Krebs, EE, in preparation]

P. Maris et al. (LENPIC), Phys. Rev. C 103 (2021) 5, 054001

 V_{2N} : available to fifth order (Q⁵, N⁴LO)

V_{3N}: currently available only to third order (Q³, N²LO)

 \Rightarrow test the χ EFT Hamiltonian, fixed in $A \leq 3$ systems, in heavier nuclei

P. Maris et al. (LENPIC), Phys. Rev. C 103 (2021) 5, 054001

P. Maris et al. (LENPIC), Phys. Rev. C 103 (2021) 5, 054001

P. Maris et al. (LENPIC), e-Print: 2206.13303 [nucl-th]

A remarkable predictive power!

P. Maris et al. (LENPIC), e-Print: 2206.13303 [nucl-th]

High-accuracy calculation of the deuteron charge and quadrupole FFs

<u>Arseniy Filin</u>, <u>Vadim Baru</u>, EE, Hermann Krebs, Daniel Möller, Patrick Reinert, Phys. Rev. Lett. 124 (2020) 082501; Phys. Rev. C103 (2021) 024313

- provides a nontrivial test the new chiral NN interactions
- can shed new light on the long-standing issue with underpredicted radii of medium-mass and heavy nuclei
- opens a way to extract the neutron radius from few-N data

How big is a neutron?

Famous proton radius puzzle: pre-2010 electron-based experiments give the radius $> 7\sigma$ larger than muon-based experiments.

CODATA-2018 recommended value: $r_p = 0.8414 \pm 0.0019$ fm

How big is a neutron?

Famous proton radius puzzle: pre-2010 electron-based experiments give the radius $> 7\sigma$ larger than muon-based experiments.

CODATA-2018 recommended value: $r_p = 0.8414 \pm 0.0019$ fm

What do we know about the neutron radius?

- no neutron targets; extrapolations of $G_{\rm C}^n(Q^2)$ extracted from ²H not reliable...
- the only information comes from (old) n-scattering experiments on Pb, Bi, ...

→ PDG (2020) recommended value: $r_n^2 = -0.1161 \pm 0.0022 \text{ fm}^2$

How big is a neutron?

Famous proton radius puzzle: pre-2010 electron-based experiments give the radius $> 7\sigma$ larger than muon-based experiments.

CODATA-2018 recommended value: $r_p = 0.8414 \pm 0.0019$ fm

What do we know about the neutron radius?

- no neutron targets; extrapolations of $G_{\rm C}^n(Q^2)$ extracted from ²H not reliable...
- the only information comes from (old) n-scattering experiments on Pb, Bi, ...

→ PDG (2020) recommended value: $r_n^2 = -0.1161 \pm 0.0022$ fm²

$$r_{\rm str}^2 = r_d^2 - r_p^2 - r_n^2 - \frac{1}{4m_p^2}$$

along with ¹H-²H isotope shifts data

 $r_d^2 - r_p^2 = 3.82070(31) \text{ fm}^2$ Jentschura et al. '11; Pachucki et al. '18

can be used to extract r_n^2 !

Outline of the calculation

Calculation of the deuteron charge radius:

The deuteron charge radius is defined in terms of the charge form factor G_C

$$r_C^2 = (-6) \frac{\partial G_C(Q^2)}{\partial Q^2} \bigg|_{Q^2 = 0}$$

which can be computed as (in the Breit frame):

$$G_{\rm C}(Q^2) = \frac{1}{3e} \frac{1}{2P_0} \sum_{\lambda} \langle P', \lambda | J_B^0 | P, \lambda \rangle$$

The matrix element is given by:

$$\frac{1}{2P_0} \langle P', \lambda' | J_B^{\mu} | P, \lambda \rangle = \int \frac{d^3 l_1}{(2\pi)^3} \frac{d^3 l_2}{(2\pi)^3} \psi_{\lambda'}^{\dagger} \left(\vec{l}_2 + \frac{\vec{k}}{4}, \vec{v}_B \right) J_B^{\mu} \psi_{\lambda} \left(\vec{l}_1 - \frac{\vec{k}}{4}, -\vec{v}_B \right)$$

Precision calculation of the deuteron charge radius in chiral EFT relies upon:

- accurate, high-precision two-nucleon interactions
- consistent charge density operator
- careful error analysis

Nuclear electromagnetic currents

Kölling, EE, Krebs, Meißner, PRC 80 (09) 045502; PRC 86 (12) 047001; Krebs, EE, Meißner, FBS 60 (2019) 31

Nuclear electromagnetic currents

Kölling, EE, Krebs, Meißner, PRC 80 (09) 045502; PRC 86 (12) 047001; Krebs, EE, Meißner, FBS 60 (2019) 31

Nuclear electromagnetic currents

Kölling, EE, Krebs, Meißner, PRC 80 (09) 045502; PRC 86 (12) 047001; Krebs, EE, Meißner, FBS 60 (2019) 31

Deuteron charge and quadrupole FFs

Filin, Möller, Baru, EE, Krebs, Reinert, PRL 124 (2020) 082501; PRC 103 (2021) 024313

The charge and quadrupole form factors of the deuteron at N⁴LO

The value of Q_d is to be compared with $Q_d^{exp} = 0.285\,699(15)(18)$ fm² Puchalski et al., PRL 125 (2020)

Deuteron charge and quadrupole FFs

Filin, Möller, Baru, EE, Krebs, Reinert, PRL 124 (2020) 082501; PRC 103 (2021) 024313

The charge and quadrupole form factors of the deuteron at N⁴LO

The value of Q_d is to be compared with $Q_d^{exp} = 0.285\,699(15)(18)\,\text{fm}^2$ Puchalski et al., PRL 125 (2020)

Combining our result for $r_{str}^2 = r_d^2 - r_p^2 - r_n^2 - \frac{3}{4m_p^2}$ with the ¹H-²H isotope shift datum $r_d^2 - r_p^2 = 3.82070(31)$ fm² leads to the prediction for the neutron radius:

 $r_n^2 = -0.105^{+0.005}_{-0.006} \text{ fm}^2$

Deuteron charge and quadrupole FFs

Filin, Möller, Baru, EE, Krebs, Reinert, PRL 124 (2020) 082501; PRC 103 (2021) 024313

The charge and quadrupole form factors of the deuteron at N⁴LO

The value of Q_d is to be compared with $Q_d^{exp} = 0.285\,699(15)(18)\,\text{fm}^2$ Puchalski et al., PRL 125 (2020)

Combining our result for $r_{str}^2 = r_d^2 - r_p^2 - r_n^2 - \frac{3}{4m_p^2}$ with the ¹H-²H isotope shift datum $r_d^2 - r_p^2 = 3.82070(31)$ fm² leads to the prediction for the neutron radius:

 $r_n^2 = -0.105^{+0.005}_{-0.006} \text{ fm}^2$

Preliminary results for the charge radius of A = 3,4 nuclei

Arseniy Filin, Vadim Baru, EE, Christopher Körber, Hermann Krebs, Daniel Möller, Andreas Nogga, Patrick Reinert, in preparation

- precision test of the theory for ⁴He
- focus on T = 0 nucleus (⁴He) + isoscalar ³H-³He combination
- correlation between BE and r_{str} helps to account for missing 3NF beyond N²LO
- theoretical prediction for the isoscalar ³H-³He charge radius 10 times more accurate than the current exp value — to be tested by CREMA soon!

Filin, Baru, EE, Körber, Krebs, Möller, Nogga, Reinert, in preparation

2 out of 3 LECs in the short-range 2N charge density already fixed from the ²H FFs; the remaining one is determined from the ⁴He FF (lots of low-energy data...)

Filin, Baru, EE, Körber, Krebs, Möller, Nogga, Reinert, in preparation

2 out of 3 LECs in the short-range 2N charge density already fixed from the ²H FFs; the remaining one is determined from the ⁴He FF (lots of low-energy data...)

$$r_{str}(^{4}He) = 1.4784 \pm 0.0030_{trunc} \pm 0.0013_{stat} \pm 0.0007_{num} fm^{2}$$

preliminary; relativistic corrections still under investigation

 \Rightarrow $r_C(^4He) = 1.6798 \pm 0.0035 \, fm$

using CODATA r_{p} and own determination of r_{n}

Filin, Baru, EE, Körber, Krebs, Möller, Nogga, Reinert, in preparation

2 out of 3 LECs in the short-range 2N charge density already fixed from the ²H FFs; the remaining one is determined from the ⁴He FF (lots of low-energy data...)

$$r_{str}(^{4}He) = 1.4784 \pm 0.0030_{trunc} \pm 0.0013_{stat} \pm 0.0007_{num} fm$$

preliminary; relativistic corrections still under investigation

 \Rightarrow $r_C(^4He) = 1.6798 \pm 0.0035 \, fm$

Filin, Baru, EE, Körber, Krebs, Möller, Nogga, Reinert, in preparation

2 out of 3 LECs in the short-range 2N charge density already fixed from the ²H FFs; the remaining one is determined from the ⁴He FF (lots of low-energy data...)

$$r_{str}({}^{4}He) = 1.4784 \pm 0.0030_{trunc} \pm 0.0013_{stat} \pm 0.0007_{num} fm$$

preliminary; relativistic corrections still under investigation

 \Rightarrow $r_C(^4He) = 1.6798 \pm 0.0035 \, fm$

The μ 4He exp. value is: $r_{C}^{exp}(^{4}He) = (1.67824 \pm 0.00083) fm$

Krauth et al., Nature 589 (2021) 7843, 527-531

Filin, Baru, EE, Körber, Krebs, Möller, Nogga, Reinert, in preparation

2 out of 3 LECs in the short-range 2N charge density already fixed from the ²H FFs; the remaining one is determined from the ⁴He FF (lots of low-energy data...)

$$r_{str}(^{4}He) = 1.4784 \pm 0.0030_{trunc} \pm 0.0013_{stat} \pm 0.0007_{num} fm$$

preliminary; relativistic corrections still under investigation

 \Rightarrow $r_{C}(^{4}He) = 1.6798 \pm 0.0035 \, fm$

The μ 4He exp. value is:

 $r_C^{exp}(^4He) = (1.67824 \pm 0.00083) \, fm$

Krauth et al., Nature 589 (2021) 7843, 527-531

Filin, Baru, EE, Körber, Krebs, Möller, Nogga, Reinert, in preparation

With all LECs being fixed, we can predict the isoscalar 3N charge radius

$$\sqrt{\frac{1}{3}r_C^2({}^{3}\text{H}) + \frac{2}{3}r_C^2({}^{3}\text{He})}$$

$$r_C(3N_{\text{isoscalar}}) = (1.9058 \pm 0.0026) \text{ fm}$$

preliminary, using CODATA-2018 r_{p} and own determination of r_{n}

Filin, Baru, EE, Körber, Krebs, Möller, Nogga, Reinert, in preparation

With all LECs being fixed, we can predict the isoscalar 3N charge radius

$$\sqrt{\frac{1}{3}r_C^2(^3\text{H}) + \frac{2}{3}r_C^2(^3\text{He})}$$

 $r_C(3N_{isoscalar}) = (1.9058 \pm 0.0026) \text{ fm}$

preliminary, using CODATA-2018 r_{p} and own determination of r_{n}

On the experimental side:

- the ³H radius poorly known (5%) from e⁻ scattering exp.: $r_C^{^{3}H} = (1.755 \pm 0.086) fm$

- more (and more precise) measurements for ³He

- e⁻ scattering experiments: $r_C^{^{3}\text{He}} = (1.959 \pm 0.030) fm$ Amroun et al. '94 (world average) $r_C^{^{3}\text{He}} = (1.973 \pm 0.016) fm$ Sick '15 (world average)

- muonic ³He (preliminary): $r_C^{^{3}\text{He}} = (1.9687 \pm 0.0013) fm$ Pohl ²²

 \Rightarrow the current exp. value for the isoscalar radius:

$$r_C^{\exp}(3N_{\text{isoscalar}}) = (1.903 \pm 0.029) \text{ fm}$$

Filin, Baru, EE, Körber, Krebs, Möller, Nogga, Reinert, in preparation

With all LECs being fixed, we can predict the isoscalar 3N charge radius

$$\sqrt{\frac{1}{3}r_C^2(^3\text{H}) + \frac{2}{3}r_C^2(^3\text{He})}$$

 $r_C(3N_{\text{isoscalar}}) = (1.9058 \pm 0.0026) \text{ fm}$

preliminary, using CODATA-2018 r_{p} and own determination of r_{n}

On the experimental side:

- the ³H radius poorly known (5%) from e⁻ scattering exp.: $r_C^{^{3}H} = (1.755 \pm 0.086) fm$

- more (and more precise) measurements for ³He

- e⁻ scattering experiments: $r_C^{^{3}\text{He}} = (1.959 \pm 0.030) fm$ Amroun et al. '94 (world average) $r_C^{^{3}\text{He}} = (1.973 \pm 0.016) fm$ Sick '15 (world average)

- muonic ³He (preliminary): $r_C^{^{3}\text{He}} = (1.9687 \pm 0.0013) fm$ Pohl²22

 \Rightarrow the current exp. value for the isoscalar radius:

$$r_C^{\exp}(3N_{\text{isoscalar}}) = (1.903 \pm 0.029) \text{ fm}$$

The ongoing T-REX experiment in Mainz [Pohl et al.] aims at measuring $r_C^{^{3}H}$ with $\pm 0.0002 fm$, which would determine the isoscalar radius with $\pm 0.0009 fm \Rightarrow$ precision tests of nuclear chiral EFT!

Summary and outlook

The 2N sector

• statistically perfect description of NN scattering data at N⁴LO⁺

Heavier systems

 accuracy currently limited to N²LO: 3NF need to be rederived using symmetry preserving cutoff regularization (work in progress)

Precision calculations of the charge radii of $A \le 4$ **nuclei**

- Deuteron:
 - determined $r_{\rm str}$ (0.1% accuracy) and Q_d (1.4% accuracy)
 - combined with isotope-shift data, extracted the neutron radius
- ⁴He: the extracted r_C (0.2% accuracy) agrees with the new μ^4 He data
- ³H-³He: predicted the isoscalar r_C (0.1% accuracy) in agreement with the current exp. value (10 times bigger errors). The T-REX experiment in Mainz will allow for a precision test of nuclear chiral EFT

MEC contribution increases from ~0.3% for ²H to ~3% for ⁴He! Heavier nuclei in progress...