

Recent STAR Results on the Unpolarized Light Quark Flavor Structure at RHIC

Jae D. Nam

Temple Univ.

Relativistic Heavy Ion Collider

- RHIC continues to serve as the world's first and only polarized *pp* collider.
- Features pp collisions at $\sqrt{s} = 500/510 \ GeV$ and $\sqrt{s} = 200 \ GeV$.
- pA/AA collisions at $\sqrt{s_{NN}} = 10 \sim 200 \ GeV$.

- At RHIC, protons can be polarized either:
 - Longitudinally (along the direction of the beam)
 - \rightarrow Proton spin composition
 - Transversely (perpendicular to the beam)
 - \rightarrow 3D image of the proton
 - Or can be unpolarized (if we choose not to look at the polarization)
 - \rightarrow Parton distribution functions
 - → Non-linear gluon effects

8/30/22

Measurements of PDFs at RHIC

• Drell-Yan type measurements:

$$d\sigma \sim \sum_{1,2} \left[f_1(x_1) \bar{f}_2(x_2) + \bar{f}_1(x_1) f_2(x_2) \right] \otimes d\hat{\sigma}_{1,2}$$

- Sensitive to both quark/anti-quarks in the proton.
- Simple final state of charged leptons: No dependency on FFs.
- Inclusive Jet measurements:

$$d\sigma \sim \sum\nolimits_{1,2} f_1(x_1,Q_1^2) f_2(x_2,Q_2^2) \otimes d\hat{\sigma}_{1,2}$$

- Jets in STAR kinematics sensitive to gluons in the proton.
- Many jet studies have been already produced from STAR with polarized beams.
- Different CoM energy / jet topology provide additional information of the initial state proton

$\overline{d}/\overline{u}$ asymmetry

- Non-diminishing asymmetry between the anti-quarks in the proton sea \bar{d} , \bar{u} is a purely non-perturbative phenomenon.
- The anti-quark ratio \bar{d}/\bar{u} is typically measured in Drell-Yan type experiments with deuterons.
- Inconsistencies among these measurements have been found, especially in the proton momentum fraction range x > 0.2.
- W measurements at RHIC may provide some insight around the region of conflict.

W production in pp collisions

do/dp_T (pb/GeV)

- W^{\pm} cross sections at LO
 - $d\sigma^{W+} \propto u(x_1)\bar{d}(x_2) + u(x_2)\bar{d}(x_1)$
 - $d\sigma^{W^-} \propto \overline{u}(x_1)d(x_2) + \overline{u}(x_2)d(x_1)$

 $\rightarrow R_W = \frac{\sigma^{W+}}{\sigma^{W-}} \sim \frac{u(x_1)\bar{d}(x_2) + u(x_2)\bar{d}(x_1)}{\bar{u}(x_1)d(x_2) + \bar{u}(x_2)d(x_2)}$

- At LO, momentum scale set by the W mass, $Q^2 \sim M_W^2$.
- Leptonic decay via $W \rightarrow ev$

•
$$\frac{d\sigma(W^{\pm} \to e\nu)}{dp_{T,e}^2} \propto \frac{(1\pm\cos\theta)^2}{M_W\cos\theta}$$

•
$$p_{T,e} \sim \frac{M_W}{2} \sin \theta$$

$$\rightarrow$$
 Jacobian peak at $p_{T,e} \sim M_W/2$

• $y_e \sim y_W + \frac{\ln 1 + \cos \theta}{\ln 1 - \cos \theta}$

- \rightarrow Charge discrimination as a function of γ_{e} .
- Key features in experiment
 - High p_T electron.
 - Electron/Hadron discrimination needed.
 - Large imbalance in p_T in detector due to v. •

Solenoid Tracker At RHIC (STAR)

- For measurements of W bosons, it is important to achieve near 4π detector acceptance.
- Time Projection Chamber(TPC)
 - Acceptance of $|\eta| < 1.3$.
 - Provides tracking & PID.
- Electro-Magnetic Calorimenter
 - Barrel (BEMC): $|\eta| < 1$.
 - Endcap (EEMC): $1 < \eta < 2$.
 - Assists in electron/hadron discrimination.
 - Assists in electron charge discrimination.
- Luminosity monitoring & Vertexing
 - Beam-Beam Counter (BBC)
 - Zero Degree Counter (ZDC)
 - Vertex Position Detector (VPD)

- The W bosons detected in the combined TPC + BEMC (barrel region) arise from a kinematic region of 0.1 < x < 0.3.
- EEMC provides coverage in the intermediate region $1 < \eta < 2$, extending the kinematic reach to 0.06 < x < 0.4.

8/30/22

RHIC pp Run Overview

Run	$\sqrt{s} (GeV)$	$L(pb^{-1})$
2009	500	10
2011	500	25
2012	510	75
2013	510	250
2017	510	350
2022	510	400 (estimate)

• $L \sim 700 + 400 \ pb^{-1}$ of ppcollisions with sufficiently high \sqrt{s} has been collected at STAR.

- Initial measurement based on Run 2009 with $L\sim 10~pb^{-1}.$ (STAR, PRD 85 092010)
- Follow up study with Run 2011-2013 with $L \sim 350 \ pb^{-1}$ has been published. (STAR, PRD 103,012001)
- Preliminary study based on Run 2017 with $L \sim 350 \ pb^{-1}$.
- New dataset with $L \sim 400 \ pb^{-1}$.

7

W tagging in the barrel ($|\eta_e| < 1$)

- W bosons that undergo the leptonic decay process, $W \rightarrow ev$, are tagged.
- Imbalance in p_T due to the missing neutrino. High $\vec{p}_{T,bal} (= \vec{p}_{T,e} + \Sigma \vec{p}_{T,recoil})$ events are selected.
- Unlike hadrons, electrons deposit their energy in a highly concentrated region in the EMC. This isolated electron energy deposit is quantified with $E_T^{2\times 2}/E_T^{4\times 4}$.
- Charge separation from TPC + EMC ($Q_e \times E_T/p_T$).
- Although not in this measurement, full *W* kinematics can be reconstructed.
 - Used for measurements of Sivers effect.

Backgrounds in the barrel

- Electroweak ($N_{Z \rightarrow ee}$, $N_{W \rightarrow \tau \nu}$)
 - Z decays with one unidentified electron
 - Leptonic decay of τ^W
 - Estimated with MC (Pythia)

QCD background

- Due to the limited acceptance and kinematic coverage, imbalance in p_T may appear in QCD events.
- Two methods employed to estimate their contributions:
- Second EEMC (N_{EEMC})
 - Accounts for missing backward coverage $(-2 < \eta < -1)$
 - Estimated by mirroring the effect of existing EEMC in the forward direction.
- Data-driven QCD (N_{QCD})
 - Remaining background contribution that passes the selection process.
 - Distribution obtained by using events that do not pass the $p_{T,bal}$.

Jae D. Nam

Efficiencies in the barrel

In the W cross-section ratio measurement, the expression of the ratio reduces to:

$$\sigma_{W^+} / \sigma_{W^-} = \frac{N_{obs}^+}{\epsilon^+ \int L dt} / \frac{N_{obs}^-}{\epsilon^- \int L dt}$$
$$= \frac{\epsilon^-}{\epsilon^+} \cdot \frac{N_{sig}^+ - N_{bg}^+}{N_{sig}^- - N_{bg}^-}$$

• where ϵ represents the product of the efficiencies of our selection process.

$$\epsilon = \epsilon_{trigger} \times \epsilon_{vertex} \times \epsilon_{tracking} \times \epsilon_{tagging}$$

- Lower efficiency in Run 2012 and 2013 (compared to Run 2011) due to higher material deposits.
- Higher tracking efficiency in 2013 than in 2012 due to improvements in tracking algorithm.
- MC study suggests that the efficiency ratio ϵ^-/ϵ^+ is consistent with unity and the deviation from unity is taken as a source of systematic uncertainty.

Endcap measurement

- W tagging method in the endcap region is similar to that for the barrel region.
 - Relaxed tracking requirements.
 - Employ EEMC and its subcomponents instead of BEMC.
- Background description also follows a similar procedure.
 - Simulations are used to estimate electroweak background.
 - Description of QCD background purely relies on data-driven method.
- Mismatch in signed- $p_{T,bal} < 20 \ GeV$ due to suboptimal QCD background description.
 - Effect taken as a systematic uncertainty.
 - To be improved in the final measurement.

Nam

11

Endcap corrections

- Efficiency correction
 - Evaluates detector acceptance & efficiency of the selection process.
 - Considers e^W within 25 $GeV < E_T < 50 GeV$.
 - Reduced efficiency in the lower η region due to detector acceptance effect.
 - The correction factor (ϵ^-/ϵ^+) is consistent with unity.
 - Remaining deviation is taken as a contribution to the systematic uncertainty.
- Charge selection
 - Uses charge $(Q \times E_T / p_T)$ distribution to determine the correct-charge ratio.
 - Two different fit methods used.
 - MC template method uses $W \rightarrow ev$ simulations for baseline description of the charge fit (nominal).
 - Log-likelihood fitting of double-gaussian function to data.
 - Difference between the two results are taken as a contribution to the systematic uncertainty.

Jae D. Nam

Results

- Measurement with STAR 2011-2013 data set has been published (PRD 103 (2021) 1, 012001).
- Additional data set taken in 2017 has been analyzed and is in preliminary release.
- These measurements are consistent with each other within their uncertainties.

Results (continued)

- Shown here is the result from the combined STAR 2011-2013 + 2017 data set.
 - Represents combined statistics of $L \approx 700 \ pb^{-1}$. ٠
 - Overall good agreement with the current PDF distributions. •

Results (projection)

- Projection for STAR 2022 data set
 - Combined statistics $\sim 1 f b^{-1}$
 - Pushes the measurement to the systematic limit.
 - Concludes $500/510 \; GeV \; pp$ program at STAR

15

Absolute cross sections

STAR, PRD 103 (2021) 1, 012001

• Measurement of the total cross sections.

$$\sigma_{W/Z}^{fid} = \frac{N_{sig} - N_{bg}}{\epsilon \int L dt}$$

$$\sigma^{tot}_{W/Z} = \sigma^{fid}_{W/Z} / A_{W/Z}$$

- Acceptance correction on 2011 sample $(\sqrt{s} = 500 \text{ GeV})$ to match 2012 and 2013 samples $(\sqrt{s} = 510 \text{ GeV})$ by using FEWZ [PRD 86 (2012) 094034].
- Z reconstruction
 - The leptonically decaying Z → e⁺e⁻ bosons are tagged by looking for electron-positron pairs.
 - Additional selection process based on the reconstructed mass M_Z to reject $\gamma^* \rightarrow e^+e^-$ processes.
- Results with STAR 2017 in progress.

16

PDF impacts

- Recent publication (STAR 2011+2012+2013) has been included in recent global fits.
- STAR data have a moderate amount of impact on the sea quark distributions around $x \sim 0.2$.

STAR

Original plot from NNPDF 3.1 Catalog of plots: α_{S} variations at NNLO

Previous STAR measurements

- Inclusive jet cross sections have been measured at STAR with $pp \sqrt{s} = 200 \ GeV$ beams.
- Previous STAR measurements exist, but suffer from small statistics and high systematic uncertainty due to underlying events.

8/30/22

Jae D. Nam

STAR

Recent measurements of Inclusive Jet

Inclusive jet cross section

New results feature pp √s = 200 GeV, 510 GeV datasets taken from 2012, corresponding to L ≈ 20 pb⁻¹, 40 pb⁻¹, respectively. 8/30/22

• Underlying events have been corrected for by estimating shifts in jet p_T based on the activities around the region off-axis to the jet cone.

Jae D. Nam

21

STAR

Summary

- W^+/W^- cross-section ratio has been measured with STAR $pp \sqrt{s} = 500,510 \text{ GeV}$ datasets.
 - Probe \bar{d}/\bar{u} asymmetry in the proton sea, complementary to Drell-Yan measurements.
 - Results based on STAR 2011+2012+2013 ($L \approx 350 \ pb^{-1}$) have been published.
 - STAR 2017 (adds additional $L \approx 350 \ pb^{-1}$) dataset in preliminary state.
 - Combined results consistent to the current PDF distributions
 - Global fit analyses confirm constraining power in the valence region.
- Inclusive Jet cross sections have been measured with both STAR $pp \sqrt{s} = 200,510 \text{ GeV}$ datasets.
 - Provide constraints to unpolarized gluon PDF at 0.01 < x < 0.5.
 - Provide normalization for future fragmentation measurements at STAR.
 - Improvements made from the previous measurements due to higher statistics and reduced systematic uncertainty from underlying events.

