

Intersection of Particle and Nuclear Physics, CIPANP 2022

Search for exotic decays of the Higgs boson and additional scalar particles in ATLAS

Christian Weber Brookhaven National Laboratory

on behalf of the ATLAS collaboration

Overview

- With the Higgs we found the first fundamental scalar particle ten years ago
- Many proposed extensions of the Standard Model feature additional scalars or pseudo scalar particles
 - E.g. Two-Higgs Doublet Model (2HDM) feature h^0, A^0, H^0, H^{\pm}
- Mixing between Higgs and additional scalars could provide access to dark sectors
 - BR($H \rightarrow BSM$) < 12% (<u>Nature 607, 52–59 (2022</u>))
- Robust program in ATLAS searching for new scalars and exotic Higgs decays

Charged Higgs $t \rightarrow H^{\pm}b, H^{\pm} \rightarrow cb$ $H^{\pm} \rightarrow ZW \rightarrow 3\ell + \nu$ $H^{\pm\pm}H^{\mp\mp} \to 4\ell$ New scalar / pseudoscalar $t\bar{t}H / t\bar{t}A \rightarrow 4t$ $X \rightarrow \gamma \gamma$, low mass X $X \rightarrow \gamma \gamma$, high mass X $t \rightarrow qX, X \rightarrow b\overline{b}, q = u, c$ $H \rightarrow \text{leptons} + b \text{-jets}$ Heavy $H \rightarrow WW$ **Exotic Higgs Decays** $H \rightarrow \chi_1 \chi_2, \ \chi_2 \rightarrow a \chi_1, \ a \rightarrow bb$ $H \rightarrow Z_d Z_d \rightarrow 4\ell, H \rightarrow Z Z_d \rightarrow 4\ell$ $H \rightarrow aa \rightarrow b\overline{b}\mu\mu$

- Search for charged Higgs H^{\pm} in jet final state
- Dataset enriched in $t\bar{t}$ production
- Exploit high multiplicity of jets with b-hadrons
- Signal signature: 3 *b*-jets, 1 *c*-jet (+initial- or final-state radiation)
- Nine regions: $(4j, 5j, 6j) \times nBtags (3, \ge 4) + (4j, 5j, 6j) \times (2 bTags + 1 loose bTag)$

nJet \ bTags	3	≥ 4	2 + 1 loose
4	main signal	Signal, mis-ided c-jet (only exactly 4 bTags)	$tar{t}$ background
5	main signal	$t\bar{t}+\geq 1b$ background	$tar{t}$ background
6	signal	$t\bar{t}+\geq 1b$ background	$tar{t}$ background

- Search for charged Higgs H^{\pm} in jet final state
- Dataset enriched in $t\bar{t}$ production
- Exploit high multiplicity of jets with b-hadrons
- Signal signature: 3 b-jets, 1 c-jet (+initial- or final-state radiation)
- Nine regions: (4j, 5j, 6j) × nBtags (3, ≥ 4) + (4j, 5j, 6j) × (2 bTags + 1 loose bTag)
- <u>Mass- parametrized Neural Network</u> classifier for signal selection
- Larger dataset, improved analysis technique ⇒ 5x improvement on expected limited w.r.t. prior publication (JHEP 11 (2018) 115)

 $H^{\pm} \rightarrow ZW \rightarrow 3\ell + \nu$

- Search for $H^{\pm} \rightarrow ZW$ in $3\ell + \nu$ final
- Require exactly $3\ell + E_T^{\text{miss}} > 25 \text{ GeV}$ Drell-Yan: $p_T^V / m_{WZ} > 0.35$ VBF: 2+ VBF jets, no b-jets, $m_{jj} > 500 \text{ GeV}$
- minimum neural network score
 8 input variables, trained on all H[±] together

arXiv:2207.03925 ATLAS Data √s = 13 TeV, 139 fb ZZ Post-fit VVV+tīV ZZ VBF CR WZ-QCD Fake/non-prompt WZ-EWK Post-fit Uncertainty 500 1500 2000 2500 1000 3000 m(WZ) [GeV] ATLAS Data _√s = 13 TeV, 139 fb WZ-QCD Post-fit WZ-EWK WZ-QCD VBF CR ΖZ Fake/non-prompt VVV+tīV Post-fit Uncertainty

800

50

10

20

 10^{3}

10

10

m(WZ) [GeV] 5

1200

1000

 $H^{\pm} \rightarrow ZW \rightarrow 3\ell + \nu$

GeV

Events / 50

- Search for $H^{\pm} \rightarrow ZW$ in $3\ell + \nu$ final
- Require exactly $3\ell + E_T^{\text{miss}} > 25 \text{ GeV}$ Drell-Yan: $p_T^V / m_{WZ} > 0.35$ VBF: 2+ VBF jets, no b-jets, $m_{ii} > 500 \text{ GeV}$
- minimum neural network score 8 input variables, trained on all H^{\pm} together
- Limit via profile-likelihood test in m_{WZ} distribution with signal templates
- WZ ZZ estimated via concurrent fit to dedicated control regions
- Previous iteration form ATLAS Phys. Lett. B 787 (2018) 68, 35% improvement
- Moderate excess at around $m_{H^{\pm}} = 375 \text{ GeV}$ 2.8σ local significance, 1.6σ global

$H^{\pm\pm}H^{\mp\mp} \to 4\ell$

DBCR3LCR4L $\ell^{\pm}\ell^{\pm}\ell^{\mp}$ $\ell^{+}\ell^{+}\ell^{-}\ell^{-}$ 34	$\begin{array}{c} \text{SR2L} \\ e^{\pm}e^{\pm} \\ e^{\pm}\mu^{\pm} \\ \mu^{\pm}\mu^{\pm} \end{array}$	$\frac{\text{SR3L}}{\ell^{\pm}\ell^{\pm}\ell^{\mp}}$	$\frac{\text{SR4L}}{\ell^+\ell^+\ell^-\ell^-}$	$\frac{\text{VR2L}}{e^{\pm}e^{\pm}}$ $\frac{e^{\pm}\mu^{\pm}}{\mu^{\pm}\mu^{\pm}}$	$\frac{\text{VR3L}}{\ell^{\pm}\ell^{\pm}\ell^{\mp}}$	$\frac{\text{VR4L}}{\ell^+\ell^+\ell^-\ell^-}$
$ \begin{vmatrix} \ell^{\pm}\ell^{\pm}\ell^{\mp} \\ 3 \end{vmatrix} = \begin{pmatrix} \ell^{+}\ell^{+}\ell^{-}\ell^{-} \\ \ell^{-}\ell^{-} \\ \ell^{-}\ell^{-} \\ \ell^{-}\ell^{-} \\ \ell^{-}\ell^{-} \\ \ell^{-}\ell^{-}\ell^{-} \\ \ell^{-}\ell^{-}\ell^{-} \\ \ell^{-}\ell^{-}\ell^{-}\ell^{-} \\ \ell^{-}\ell^{-}\ell^{-}\ell^{-}\ell^{-} \\ \ell^{-}\ell^{-}\ell^{-}\ell^{-}\ell^{-}\ell^{-} \\ \ell^{-}\ell^{-}\ell^{-}\ell^{-}\ell^{-}\ell^{-}\ell^{-} \\ \ell^{-}\ell^{-}\ell^{-}\ell^{-}\ell^{-}\ell^{-}\ell^{-}\ell^{-}$	$ \begin{array}{c} e^{\pm}e^{\pm}\\ e^{\pm}\mu^{\pm}\\ \mu^{\pm}\mu^{\pm} \end{array} $	$\ell^{\pm}\ell^{\pm}\ell^{\mp}$	$\ell^+\ell^+\ell^-\ell^-$	$e^{\pm}e^{\pm}$ $e^{\pm}\mu^{\pm}$ $\mu^{\pm}\mu^{\pm}$	$\ell^{\pm}\ell^{\pm}\ell^{\mp}$	$\ell^+\ell^+\ell^-\ell^-$
3 4		3				
		5	4	2	3	4
≥ 300 [100, 200)	≥ 300	≥ 300	≥ 300	_ ≥ 300	- [100, 300)	- [200, 300)
	≥ 300 < 3.5 - -	≥ 300 - - -	- ≥ 300 - -	[200, 300) < 3.5 - > 30 - < 3.0 -		
	 inverted -	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} - & - & - & \geq 300 \\ - & - & - & < 3.5 \\ - & - & - & - \\ - & - & - & - \\ - & - &$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{vmatrix} - & - & - & - & - & - & - & - & - & -$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

- Search for pair production of double charged Higgs $H^{\pm\pm} H^{\mp\mp}$, $H^{\pm\pm} \rightarrow \ell^{\pm} \ell^{\pm}$ $\ell = e, \mu$ and leptonic τ decays
- e, μ final states \Rightarrow 3 signal regions same sign 2ℓ , 3ℓ , and 4ℓ final state

ATLAS-CONF-2022-010

$H^{\pm\pm}H^{\mp\mp} \to 4\ell$

- Search for pair production of double charged Higgs $H^{\pm\pm} H^{\mp\mp}$, $H^{\pm\pm} \rightarrow \ell^{\pm} \ell^{\pm}$ $\ell = e, \mu$ and leptonic τ decays
- e, μ final states \Rightarrow 3 signal regions same sign 2ℓ , 3ℓ , and 4ℓ final state
- Fit over leading di-lepton invariant mass distribution $m_{\ell_1^{\pm}\ell_2^{\pm}}$, (2 ℓ , 3 ℓ regions), single bin event yields in 4 ℓ region
- concurrent fits in CR for Drell-Yan and di-boson backgrounds

ATLAS-CONF-2022-010

٠

•

$t\bar{t}H / t\bar{t}A \rightarrow 4t$

Data

tīW EW

Mat. Conv.

Uncertainty

tīttī

∎tīH

HF e

Others

*: normalised to total background

--- mH=400 GeV

 \Box tt̄(Z/ γ^*)(high)

ttw QCD

QmisID

Low m_{v*}

HF μ

tīt

- Search for heavy scalar *H*, pseudoscalar *A* in 4*t* processes
- Avoids large negative interference from SM $t\bar{t}$ in $gg \rightarrow H/A \rightarrow t\bar{t}$
- $\ell^{\pm}\ell^{\mp}$ or $\geq 3\ell$, but Z-vetoed 6+ jets, 2+ of those b-tagged $H_T > 500 \text{ GeV}$
- Signal selection via two sequential BDTs
 - 1. Discriminate $t\bar{t}t\bar{t}$ from other backgrounds (SM BDT)
 - 2. Select signal from $t\bar{t}t\bar{t}$ events, signal mass-parametrized (BMS pBDT)

0.4

0.5

0.6

0.7

0.8

BSM pBDT @ 400 GeV

0.9

Christian Weber

- Search for heavy scalar *H*, pseudoscalar *A* in 4*t* processes
- Data / Bkg. Avoids large negative interference from SM $t\bar{t}$ in $gg \rightarrow H/A \rightarrow t\bar{t}$
- $\ell^{\pm}\ell^{\mp}$ or $\geq 3\ell$, but Z-vetoed 6+ jets, 2+ of those b-tagged $H_T > 500 \, {\rm GeV}$
- Signal selection via two sequential BDTs
 - Discriminate $t\bar{t}t\bar{t}$ from other backgrounds (SM BDT) 1.
 - 2. Select signal from $t\bar{t}t\bar{t}$ events, signal mass-parametrized (BMS pBDT)

ATLAS Preliminary

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

60 BSM 4tops SSML

BSM SR

Post-Fit

50

30

20

0.5

0.1

0.2

Data

tīW EW

Mat. Conv.

Uncertainty

ΗF μ

ttt

tītī

■tīH

HF e

╘╇┟┥┥┶┝┟┥┥┥┥┟┍**┯**╱┥┟┍┥┥┥┥┟┍┟┥┥┥┥┝┟┥┥┥

0.4

0.5

0.6

0.7

0.3

Others

• Fit to BSM pBDT score distribution for signal, concurrent fit in control regions to fix backgrounds

of the two Higgs doublets in the 2HDM model

Christian Weber

Search for light axion-like particle X, coupling to gluons $_{0.2}$ ٠

(data-fit)/σ

First LHC result with •

 $10 \text{ GeV} < m_{\gamma\gamma} < 70 \text{ GeV}$

- Two isolated photons, • $E_T^{\gamma} > 22 \text{ GeV}, p_T^{\gamma\gamma} > 50 \text{ GeV}$ mitigate trigger turn-on, optimize background shape
- Signal shape modelled by double-sided **Crystal Ball**
- Background modelled by analytical function

 $X \rightarrow \gamma \gamma$, low mass X

13

Search for light axion-like particle X, coupling to gluons

30

10

Christian Weber

imes BR [fb]

Upper Limit on σ_{fid}

95% CL

First LHC result with

 $10 \text{ GeV} < m_{\gamma\gamma} < 70 \text{ GeV}$

- Two isolated photons, ٠ $E_T^{\gamma} > 22 \text{ GeV}, p_T^{\gamma\gamma} > 50 \text{ GeV}$ mitigate trigger turn-on, optimize background shape
- Signal shape modelled by double-sided **Crystal Ball**
- Background modelled by analytical function
- Limit down to $m_x = 10 \text{ GeV}$ ٠
- 3.0 σ local, 1.5 σ global excess around $m_X = 19.4 \, \text{GeV}$

$X \rightarrow \gamma \gamma$, high mass X

- Search for heavy scalar X in $\gamma\gamma$ final state
- Two isolated photons $\frac{E_T^{\gamma_1}}{m_{\gamma\gamma}} > 0.3, \frac{E_T^{\gamma_2}}{m_{\gamma\gamma}} > 0.25, m_{\gamma\gamma} > 150 \text{ GeV}$
- Signal $m_{\gamma\gamma}$ distribution Double-sided crystal ball
- Main backgrounds: non-resonant $\gamma\gamma$, Ξ γ +jet, di-jet with jet misidentified as Ξ \times photon
- Background modelled by analytical function
- Template fit to $m_{\gamma\gamma}$ distribution
- No significant excesses found, limits placed on scalar and Randal-Sundrum gravitons production cross section

Phys. Lett. B 822 (2021) 136651

1500

Expected $\pm 1 \sigma$

2000

ATLAS

Spin-2 Model

 $k/\overline{M}_{Pl} = 0.1$

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

Spin-0

0.5

Christian Weber

2500

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

m_x [GeV]

$t \rightarrow qX, X \rightarrow b\overline{b}, q = u, c$

- Search flavor changing neutral current decay $t \rightarrow qX, X \rightarrow b\overline{b}$ in $t\overline{t}$ events, X light scalar with flavor charge
- signature: exactly 1ℓ , $E_T^{\text{miss}} \ge 20 \text{ GeV}$, ≥ 4 jets at least three b-tagged,
- Neural Network for signal selection
- Three signal regions (4j, 5j, 6j) × 3b
 Three control regions (4j, 5j, 6j) × ≥ 4b
 Regions with 2b to improve tt background modelling
- Concurrent fit to signal and control regions on Neural Network score
- Results generally consistent with Standard Model

Christian Weber

ATLAS-CONF-2022-027

$H \rightarrow \text{leptons} + b \text{-jets}$

ATLAS-CONF-2022-039

0.5

5×BR [pb]

10⊨

10⁻¹⊨

200

- Search for new scalar *H* with flavor-violating decays
- Signal: 2, 3, or 4 t-quark final states
 ℓ[±]ℓ[±], 3ℓ or 4ℓ
- Signal regions by lepton multiplicity, total lepton charge, multi-output DNN (DNN^{cat}) (17 signal regions total)
- Second DNN for signal-background discrimination (DNN^{SB})
- Fit on DNN^{SB} concurrently with control regions
- Extract limit on new scalar production cross section as a function of m_H , H-tq couplings ρ_{tq}

- Search for heavy Higgs to *WW* in associated production with *W*
- ℓ[±]νℓ[±]νqq final state
 veto events with additional leptons
 veto events with b-tagged small radius jets
- Two signal regions, depending on qq jet overlap Resolved SR: two small radius jets Boosted SR: one large radius jet
- Fit over effective mass m_{eff} distribution: m_{eff} =scalar sum of p_T for leptons, jet(s) + E_t^{miss}

- Search for heavy Higgs to *WW* in associated production with *W*
- ℓ[±]νℓ[±]νqq final state
 veto events with additional leptons
 veto events with b-tagged small radius jets
- Two signal regions, depending on qq jet overlap Resolved SR: two small radius jets Boosted SR: one large radius jet
- Fit over effective mass m_{eff} distribution: : scalar sum of p_T for leptons, jet(s) + E_t^{miss}
- Limits on effective field theory BSM HVV coupling
 - $\rho_H = \sin(\beta \alpha)$ in 2HDM models
 - f_W , f_{WW} = anomalous coupling to W

$H \rightarrow \chi_1 \chi_2, \ \chi_2 \rightarrow a \chi_1, \ a \rightarrow b b$

- Search for cascade $H \to \tilde{\chi}_2^0 \tilde{\chi}_1^0 \to a \tilde{\chi}_1^0 \tilde{\chi}_1^0$, $a \to bb$ Higgs from ZH production
- NMSSM scenario: $\tilde{\chi}_1^0, \tilde{\chi}_2^0$ two lightest neutralinos, a - light pseudoscalar
- Select on $Z \rightarrow \ell \ell$, $\ell = e, \mu$ to reduce backgrounds
- Model of background distribution constructed from fits in Control Regions
- Limits via fits of signal distribution and background model to m_{jj} distribution

$H \rightarrow \chi_1 \chi_2, \ \chi_2 \rightarrow a \chi_1, \ a \rightarrow bb$

- Search for cascade $H \to \tilde{\chi}_2^0 \tilde{\chi}_1^0 \to a \tilde{\chi}_1^0 \tilde{\chi}_1^0$, $a \to bb$ Higgs from ZH production
- NMSSM scenario: $\tilde{\chi}_1^0, \tilde{\chi}_2^0$ two lightest neutralinos, a - light pseudoscalar
- Select on $Z \rightarrow \ell \ell$, $\ell = e, \mu$ to reduce backgrounds
- Model of background distribution constructed from fits in Control Regions
- Limits via fits of signal distribution and background model to m_{jj} distribution
- 3d limit as a function of $m_a, m_{\widetilde{\chi}_1^0}, m_{\widetilde{\chi}_2^0}$
- Results are consistent with Standard Model

 $H \rightarrow Z_d Z_d \rightarrow 4\ell, H \rightarrow Z Z_d \rightarrow 4\ell$

 $\begin{array}{ll} \mbox{High-mass}\, Z_d \ (\mbox{HM}) \colon & \mbox{H} \to Z_d Z_d \to 4\ell & 15 \ \mbox{GeV} < m_{Z_d} < 60 \ \mbox{GeV} & \ell = e, \mu \\ \mbox{Low-mass}\, Z_d \ (\mbox{LM}) \colon & \mbox{H} \to Z_d Z_d \to 4\mu & 1 \ \mbox{GeV} < m_{Z_d} < 15 \ \mbox{GeV} \\ \mbox{Single}\, Z_d \ \mbox{channel} \colon & \mbox{H} \to ZZ_d \to 4\ell & 15 \ \mbox{GeV} < m_{Z_d} < 55 \ \mbox{GeV} & \ell = e, \mu \\ \end{array}$

- Search for Higgs to one or two BSM vector bosons in 4ℓ final state, $\ell = e, \mu$
- Higgs from gluon-gluon fusion production
- $ZZ^* \rightarrow 4\ell$ main background for all channels

JHEP 03 (2022) 041

 $H \rightarrow Z_d Z_d \rightarrow 4\ell, H \rightarrow Z Z_d \rightarrow 4\ell$

$Z_d Z_d$

- Select leptons so that $\Delta_{m\ell\ell} = |m_{12} m_{34}|$ minimal
- $m_{4\ell}$ compatible with Higgs Veto Z-bosons and quarkonia m_{12} / m_{34} > 0.85 LM 1.2 GeV < m_{12} , m_{34} < 20 GeV
- fits to $\langle m_{\ell\ell} \rangle = \frac{1}{2}(m_{12} + m_{34})$ for limits

High-mass Z_d (HM): $H \rightarrow Z_d Z_d \rightarrow 4\ell$ 15 GeV $< m_{Z_d} < 60 \text{ GeV}$ $\ell = e, \mu$ Low-mass Z_d (LM): $H \rightarrow Z_d Z_d \rightarrow 4\mu$ 1 GeV $< m_{Z_d} < 15 \text{ GeV}$ Single Z_d channel: $H \rightarrow ZZ_d \rightarrow 4\ell$ 15 GeV $< m_{Z_d} < 55 \text{ GeV}$ $\ell = e, \mu$

JHEP 03 (2022) 041

- $H \rightarrow aa \rightarrow \mu\mu \ bb$, gluon-gluon fusion production
- $a \rightarrow bb$ large branching fraction $a \rightarrow \mu\mu$ clean, high-resolution signal for trigger
- 2μ , exactly 2 b-tagged jets, $E_T^{miss} < 60 \text{ GeV}$ 15 GeV $< m_{\mu\mu} < 65 \text{ GeV}$, $m_{\mu\mu bb} < 140 \text{ GeV}$ kinematic fit to improve $m_{\mu\mu bb}$
- BDT to improve signal selection, trained individually for multiple signal mass points

Phys. Rev. D 105 (2022) 012006

- $H \rightarrow aa \rightarrow \mu\mu \ bb$, gluon-gluon fusion production
- $a \rightarrow bb$ large branching fraction $a \rightarrow \mu\mu$ clean, high-resolution signal for trigger
- 2μ , exactly 2 b-tagged jets, $E_T^{\text{miss}} < 60 \text{ GeV}$ $15 \text{ GeV} < m_{\mu\mu} < 65 \text{ GeV}$, $m_{\mu\mu bb} < 140 \text{ GeV}$ kinematic fit to improve $m_{\mu\mu bb}$
- BDT to improve signal selection, trained individually for multiple signal mass points
- Fit to $m_{\mu\mu}$ in 2 to 3 GeV wide windows around presumed m_a
- 4x improvement on limit due to larger dataset and BDT w.r.t prior ATLAS result <u>Phys. Lett. B 790 (2019) 1</u>

Phys. Rev. D 105 (2022) 012006

Conclusion

- Comprehensive program targeting signatures of new scalars, pseudoscalars and beyond Standard Model Higgs decays
- Results generally consistent with Standard Model expectations
 - Though few local hints of excesses
- LHC Run 3 just started, but Run 2 analysis still being released
 - More to come with Run 3 data

Charged Higgs $t \rightarrow H^{\pm}b, H^{\pm} \rightarrow cb$ $H^{\pm} \rightarrow ZW \rightarrow 3\ell + \nu$ $H^{\pm\pm}H^{\mp\mp} \rightarrow 4\ell$ New scalar / pseudoscalar $t\bar{t}H / t\bar{t}A \rightarrow 4t$ $X \rightarrow \gamma \gamma$, low mass X $X \rightarrow \gamma \gamma$, high mass X $t \rightarrow qX, X \rightarrow b\overline{b}, q = u, c$ $H \rightarrow$ leptons + *b*-jets Heavy $H \rightarrow WW$ **Exotic Higgs Decays** $H \rightarrow \chi_1 \chi_2, \ \chi_2 \rightarrow a \chi_1, \ a \rightarrow bb$ $H \rightarrow Z_d Z_d \rightarrow 4\ell, H \rightarrow Z Z_d \rightarrow 4\ell$ $H \rightarrow aa \rightarrow b\overline{b}\mu\mu$

See all public ATLAS results here

Conclusion

- Comprehensive program targeting signatures of new scalars, pseudoscalars and beyond Standard Model Higgs decays
- Results generally consistent with Standard Model expectations
 - Though few local hints of excesses
- LHC Run 3 just started, but Run 2 analysis still being released
 - More to come with Run 3 data

Thank you!

Charged Higgs $t \rightarrow H^{\pm}b, H^{\pm} \rightarrow cb$ $H^{\pm} \rightarrow ZW \rightarrow 3\ell + \nu$ $H^{\pm\pm}H^{\mp\mp} \rightarrow 4\ell$ New scalar / pseudoscalar $t\bar{t}H / t\bar{t}A \rightarrow 4t$ $X \rightarrow \gamma \gamma$, low mass X $X \rightarrow \gamma \gamma$, high mass X $t \rightarrow qX, X \rightarrow b\overline{b}, q = u, c$ $H \rightarrow$ leptons + *b*-jets Heavy $H \rightarrow WW$ **Exotic Higgs Decays** $H \rightarrow \chi_1 \chi_2, \ \chi_2 \rightarrow a \chi_1, \ a \rightarrow bb$ $H \rightarrow Z_d Z_d \rightarrow 4\ell, H \rightarrow Z Z_d \rightarrow 4\ell$ $H \rightarrow aa \rightarrow b\overline{b}\mu\mu$

See all public ATLAS results here

Backup

- Search for $H \to J/\psi \gamma$, $\dot{\psi}(2S)\gamma$, $\Upsilon(1S, 2S, 3S) \gamma$ in $\mu^-\mu^+\gamma$ final state
- $p_T^{\mu} > 3.0 \text{ GeV}$, one μ : $p_T^{\mu} > 18 \text{ GeV}$, $p_T^{\gamma} > 35 \text{ GeV}$

 $m_{\mu\mu}$ cut consistent with $m_{\psi(nS)}$ or $m_{\Upsilon(nS)}$, $p_T^{\mu\mu}$, $m_{\mu\mu\gamma}$ cuts

- 3 signal regions: ψ(nS), Υ(nS) barrel (high resolution), Υ(nS) endcap (lower resolution)
- Signal and background $m_{\mu\mu}$, $m_{\mu\mu\gamma}$ distributions described by analytical model

$HH + V \rightarrow 4b + V$

- Search for Heavy Higgs $H \rightarrow hh$ in association with V-boson, $hh \rightarrow b\bar{b}b\bar{b}$, $Z \rightarrow \ell\ell$, $\nu\nu$
- signal regions: 0ℓ , $1\ell 2\ell \times V \rightarrow VH$; 0ℓ , $2\ell \times A \rightarrow ZH$ $\geq 4b$ -jets,
- Control Regions for $t\bar{t}$, V+jets
- one BDT for signal discrimination per signal region
- Fit to BDT score

ATLAS-CONF-2022-043

 $HH + V \rightarrow 4b + V$

- Search for Heavy Higgs $H \rightarrow hh$ in association with V-boson, $hh \rightarrow b\overline{b}b\overline{b}$, $Z \rightarrow \ell\ell$, $\nu\nu$
- signal regions: 0ℓ , $1\ell 2\ell \times V \rightarrow VH$; 0ℓ , $2\ell \times A \rightarrow ZH$ $\geq 4b$ -jets,
- Control Regions for $t\bar{t}$, V+jets
- one BDT for signal discrimination per signal region
- Fit to BDT score

ATLAS-CONF-2022-043

m_A [GeV]

- Search for charged Higgs H^{\pm} in $\mu\mu$ final state via intermediate $W^{\pm}A$, A CP odd pseudoscalar
- Require $\mu^+\mu^-$, 1e, ≥ 3 jets, at least one b-tagged
- Look for resonance in $m_{\mu\mu}$ spectrum H^{\pm} spectrum not used in due poor resolution

- Search for charged Higgs H^{\pm} in $\mu\mu$ final state via intermediate $W^{\pm}A$, A CP odd pseudoscalar
- Require $\mu^+\mu^-$, 1e, ≥ 3 jets, at least one b-tagged
- Look for resonance in $m_{\mu\mu}$ spectrum H^{\pm} spectrum not used in due poor resolution
- Limit via single bin-counting experiment in optimized window around presumed m_A Advantage: Reduced dependence on $m_{H^{\pm}}$, only enters via selection efficiency

- Search for charged Higgs H^{\pm} in $\mu\mu$ final state via intermediate $W^{\pm}A$, A CP odd pseudoscalar
- Require $\mu^+\mu^-$, 1e, ≥ 3 jets, at least one b-tagged
- Look for resonance in $m_{\mu\mu}$ spectrum H^{\pm} spectrum not used in due poor resolution
- Limit via single bin-counting experiment in optimized window around presumed m_A Advantage: Reduced dependence on $m_{H^{\pm}}$, only enters via selection efficiency
- ~2x improvement over prior CMS results
 <u>Phys. Rev. Lett. 123, 131802</u>

$H \rightarrow \chi_1 \chi_2, \ \chi_2 \rightarrow a \chi_1, \ a \rightarrow b \overline{b}$

- Search for cascade $H \to \tilde{\chi}_2^0 \tilde{\chi}_1^0 \to a \tilde{\chi}_1^0 \tilde{\chi}_1^0$, $a \to bb$ Higgs from ZH production
- NMSSM scenario: $\tilde{\chi}_1^0, \tilde{\chi}_2^0$ two lightest neutralinos, a - light pseudoscalar
- Select on $Z \rightarrow \ell \ell$, $\ell = e, \mu$ to reduce backgrounds
- Model of background distribution constructed from fits in Control Regions
- Limits via fits of signal distribution and background model to m_{jj} distribution
- 3d limit as a function of $m_a, m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}$

	SR	CRZ	CRTop	VRMET		
Number of leptons			2			
Number of jets			≥ 2			
Number of <i>b</i> -tagged jets	≥ 1					
Dilepton $p_{\rm T}$ [GeV]	eV] > 40					
$p_{\rm T}$ fraction	[0.8, 1.2]					
Dilepton mass [GeV]	[81, 101]	[81, 101]	[50, 81] or > 101	[81, 101]		
$E_{\rm T}^{\rm miss}$ [GeV]	> 100	[60, 100]	> 100	> 50		
Dijet mass [GeV]	[20, 120]	[20, 120]	[20, 120]	> 150		
p_T fraction: $rac{p_T^{jj}+E_T^{miss}}{p_T^{ll}}$						

 $t\bar{t}H / t\bar{t}A \rightarrow 4t$

- Search for heavy scalar *H*, pseudoscalar *A* in 4*t* processes
- $\ell^+ \ell^+$ or $\ell^- \ell^-$, Z-vetoed 6+ jets, 2+ of those b-tagged $H_T > 500 \text{ GeV}$

Region	Channel	$N_{ m j}$	N _b	Other selection cuts	Fitted variable
CR Conv	$e^{\pm}e^{\pm} \mid\mid e^{\pm}\mu^{\pm}$	$4 \leq N_j < 6$	≥ 1	$m_{ee}^{\text{CV}} \in [0, 0.1] \text{ GeV}$ 200 < H_{T} < 500 GeV	$m_{ee}^{\rm PV}$
CR HF e	eee eeµ		= 1	$100 < H_{\rm T} < 250 {\rm GeV}$	Yield
CR HF μ	еµµ µµµ		= 1	$100 < H_{\rm T} < 250 {\rm GeV}$	Yield
CR tīW	$e^{\pm}\mu^{\pm}\mid\mid\mu^{\pm}\mu^{\pm}$	≥ 4	≥ 2	$m_{ee}^{CV} \notin [0, 0.1] \text{ GeV}, \eta(e) < 1.5$ for $N_{b} = 2, H_{T} < 500 \text{ GeV}$ or $N_{j} < 6;$ for $N_{b} \ge 3, H_{T} < 500 \text{ GeV}$	$\sum p_{\mathrm{T}}^{\ell}$
CR lowBDT	SS+3L	≥ 6	≥ 2	$H_{\rm T} > 500 {\rm GeV}, {\rm SM \; BDT} < 0.55$	SM BDT
BSM SR	SS+3L	≥ 6	≥ 2	$H_{\rm T} > 500 \text{ GeV}, \text{ SM BDT} \ge 0.55$	BSM pBDT

- Search for heavy Higgs to *WW* in associated production with *W*
- ℓ[±]νℓ[±]νqq final state
 veto events with additional leptons
 veto events with b-tagged small radius jets
- Two signal regions, depending on qq jet overlap Resolved SR: two small radius jets
 Boosted SR: one large radius jet

Selections	Boosted SR	Resolved SR	ssWW CR	Boosted WZ CR	Resolved WZ CR		
Trigger	Single lepton						
	two sar	ne-sign leptons with	three leptons with				
Leptons	p_{1}	$\Gamma > 27, 20 \text{ GeV}$	$p_{\rm T} > 27, 20, 20 { m GeV}$				
			at least one SFOS lepton pair				
	zero additional veto leptons						
$m_{\ell\ell}$		> 100 GeV		-			
$m_{\ell\ell\ell}$		-	> 100 GeV				
<i>b</i> -jets		zero b-tagged small-R jets					
$E_{ m T}^{ m miss}$	> 80 GeV	> 60 GeV		> 40 GeV			
Large-R jets	at least one large- <i>R</i> jet with	zero large- R jets with		at least one large-R jet with	zero large-R jets with		
	$p_{\rm T} > 200 \text{ GeV}, \ \eta < 2.0$	$p_{\rm T}$ > 200 GeV, $ \eta < 2.0$		$p_{\rm T} > 200 \text{ GeV}, \ \eta < 2.0$	$p_{\rm T} > 200 \text{ GeV}, \ \eta < 2.0$		
	$50 \text{ GeV} < m_J < 200 \text{ GeV}$	$50 \text{ GeV} < m_J < 200 \text{ GeV}$		$50 \text{ GeV} < m_J < 200 \text{ GeV}$	$50 \text{ GeV} < m_J < 200 \text{ GeV}$		
	and pass 80% W-tagger WP			and pass 80% W-tagger WP			
Small- <i>R</i> jets	-	at least two small- <i>R</i> jets with		-	at least two small-R jets with		
		$p_{\rm T} > 20$ GeV and $ \eta $	< 2.5		$p_{\rm T} > 20 \text{ GeV and } \eta < 2.5$		
m_{jj}	-	$50 \text{ GeV} < m_{jj} < 110 \text{ GeV}$	> 200 GeV	-	-		