

Searches for dark matter with the ATLAS detector

Joe Haley Oklahoma State University

August 29-September 4

Dark Matter

Favorite collider candidate: WIMP

- Weakly interacting, heavy, & stable
- Naturally accounts for observed relic density (WIMP Miracle)
- Should be produced at the LHC

26.8% Dark Matter

Dark Matter

4.9% Baryonic Matter 26.8% Dark Matter 68.3% Dark Energy

Favorite collider candidate: WIMP

- Weakly interacting, heavy, & stable
- Naturally accounts for observed relic density (WIMP Miracle)
- Should be produced at the LHC

Complementary to dedicated DM experiments

General Collider Strategy

- Resonance searches: $\chi \rightarrow jj/bb/tt/ll$
- $E_{T}^{miss} + X$
 - ▷ DM particles escape detection $\Rightarrow |\mathbf{p}_{T}^{miss}| \equiv E_{T}^{miss}$
 - > Recoil against SM object(s) $\Rightarrow X = jet, \gamma, W, Z, H/S, tt/bb, tW, ...$

This talk:

- A selection of the most recent ATLAS dark matter searches ⇒ E_T^{miss} + X
- All results using the full Run 2 dataset
 ⇒ 139 fb⁻¹ of pp collisions at √s = 13 TeV

General Collider Strategy

- Resonance searches: $\chi \rightarrow jj/bb/tt/ll$
- $E_{T}^{miss} + X$
 - ▷ DM particles escape detection $\Rightarrow |\mathbf{p}_{T}^{miss}| \equiv E_{T}^{miss}$
 - > Recoil against SM object(s) $\Rightarrow X = jet, \gamma, W, Z, H/S, tt/bb, tW, ...$

This talk:

- A selection of the most recent ATLAS dark matter searches ⇒ E_T^{miss} + X
- All results using the full Run 2 dataset
 ⇒ 139 fb⁻¹ of pp collisions at √s = 13 TeV

Interpreting DM Production

Simplified DM Models

Benchmark models defined in CMS/ATLAS Dark Matter Forum <u>Physics of the Dark Universe 27 (2020) 100371</u>

- Dark matter assumed to be a Dirac fermion WIMP: χ
- Boson mediator between SM and DM
 - > Spin-0: Scalar (S) or pseudo-scalar (P/a)
 - > Spin-1: Vector (V/Z') or axial-vector (A)
- Minimal set of parameters: M_{χ} , M_{med} , g_{χ} , g_{q} , g_{ℓ}

 E_{T}^{miss} + jet

Sensitive to Pseudo-scalar and Axial-vector mediators

Select events with:

- > Large missing momentum: E_{T}^{miss} > 200 GeV
- > High- p_T jet from initial state radiation: $p_T^{jet} > 150$ GeV
- > Veto events with e, μ, τ, γ

Main backgrounds from W/Z+jets (90%), plus top

- Shapes modeled by state-of-the-art Monte Carlo simulation
 - > NNLO QCD + NLO EW
- Normalization determined from data
 - > Four W/Z+jets Control Regions (CRs) enriched in W(ev), W(μv), Z(ee), Z($\mu \mu$)
 - One top CR enriched in tt + single top

CIPANP 2022

 E_{T}^{miss} + jet

Sensitive to Pseudo-scalar and Axial-vector mediators

Select events with:

- Large missing momentum: E_T^{miss} > 200 GeV
- > High- p_T jet from initial state radiation: p_T^{jet} > 150 GeV
- > Veto events with e, μ, τ, γ

Main backgrounds from W/Z+jets (90%), plus top

- Shapes modeled by state-of-the-art Monte Carlo simulation
 - > NNLO QCD + NLO EW
- Normalization determined from data
 - Four W/Z+jets Control Regions (CRs) enriched in W(ev), W(μv), Z(ee), Z(μμ)
 - > One top CR enriched in tt + single top

Fit p_T^{recoil} = |p_T| of system recoiling against hadronic activity

 $(In SR: p_{T}^{recoil} \equiv E_{T}^{miss})$

 1.5-4.2% total uncertainty on background prediction

Phys. Rev. D 103, 112006 (2021)

Perform profile likelihood fit

one Signal Region (SR)

Simultaneous fit in five CRs and

• Fit consistent with SM

⇒ Set limits on DM production cross-section and parameters

E_{T}^{miss} + jet

Limits on Axial-Vector Mediator:

See paper for additional limits on pseudo-scalar model, squark production, large extra-dimensions, and invisible Higgs

CIPANP 2022

 $E_{\tau}^{\text{miss}} + Z(\ell \ell)$

Interpreted in $H \rightarrow invisible$, 2HDM+a, and simplified DM models

Select Signal Region (SR) with:

- > Two opposite-charge leptons $(e^+e^-, \mu^+\mu^-)$
- > $m_{\ell\ell} \in [76, 106] \text{ GeV}, \Delta R_{\ell\ell} < 1.8$
- > E_{T}^{miss} > 90 GeV, E_{T}^{miss} signif. > 9

Dominant backgrounds from ZZ and WZ

Constrained using three Control Regions (CRs):

 $E_{\mathrm{T}}^{\mathrm{miss}} + Z(\ell\ell)$

Interpreted in H→invisible, 2HDM+a, and simplified DM models

Select Signal Region (SR) with:

- > Two opposite-charge leptons (e^+e^- , $\mu^+\mu^-$)
- > $m_{\ell\ell} \in [76, 106] \text{ GeV}, \Delta R_{\ell\ell} < 1.8$
- > E_{T}^{miss} > 90 GeV, E_{T}^{miss} signif. > 9

Dominant backgrounds from ZZ and WZ

• Constrained using three Control Regions (CRs):

Simultaneous profile likelihood fit in SR and three CRs

• Simplified DM and 2HDM+a model use $m_{\rm T}$ distribution

H→inv. uses Boosted
 Decision Tree discriminant

Good agreement with SM prediction :-(

 \Rightarrow Set limits on model parameters

Limits on WIMP-nucleon cross-section complementary to direct detection

Interpreted as SM Higgs \rightarrow invisible: BR($H\rightarrow$ inv.) = 0.003 ± 0.09

- 45% better sensitivity beyond increase in luminosity!
- Competitive with VBF $H \rightarrow$ invisible

Also interpreted in 2HDM+a and simplified DM models

See also talk by Will Fawcett with more $H \rightarrow inv$. and Higgs as a portal to dark sector.

Limits on WIMP-nucleon cross-section complementary to direct detection

Interpreted as SM Higgs \rightarrow invisible: BR($H \rightarrow$ inv.) = 0.003 ± 0.09

- 45% better sensitivity beyond increase in luminosity!
- Competitive with VBF $H \rightarrow$ invisible

Also interpreted in 2HDM+a and simplified DM models

See also talk by Will Fawcett with more $H \rightarrow inv$. and Higgs as a portal to dark sector.

 $E_{T}^{miss} + tt (tW, tq)$

Focus on DM with spin-0 mediator

- Important in models with Min. Flavor Violation
- Yukawa-like coupling to mediator $\propto m_f$

Combination of 0, 1, & 2 lepton searches

Eur. Phys. J. C 80 (2020) 737, JHEP 04 (2020) 174, JHEP 04 (2021) 165

Set limits on $\sigma/\sigma_{\text{theory}}$ vs. $m_{\phi(a)}$

Interpreted as $H \rightarrow$ invisible •

Analysis	Best fit $\mathcal{B}_{H o ext{inv}}$	Observed upper limit	Expected upper limit
ttOL	$0.48^{+0.27}_{-0.27}$	0.95	$0.52^{+0.23}_{-0.16}$
tt1L	$-0.04^{+0.35}_{-0.29}$	0.74	$0.80^{+0.40}_{-0.26}$
tt2L	$-0.09^{+0.22}_{-0.20}$	0.39	$0.42_{-0.12}^{+0.18}$
<i>ttH</i> comb.	$0.08^{+0.16}_{-0.15}$	0.40	$0.30_{-0.09}^{+0.13}$

CIPANP 2022

g vere E_{T}^{miss} + *tt* (*tW,tq*)

Focus on DM with spin-0 mediator

- Important in models with Min. Flavor Violation
- Yukawa-like coupling to mediator $\propto m_f$

Combination of 0, 1, & 2 lepton searches

Eur. Phys. J. C 80 (2020) 737, JHEP 04 (2020) 174, JHEP 04 (2021) 165

• Set limits on $\sigma/\sigma_{ ext{theory}}$ vs. $m_{\phi(a)}$

⇒ Exclude m_{ϕ} up to 370 GeV

• Interpreted as $H \rightarrow$ invisible

Analysis	Best fit $\mathcal{B}_{H o ext{inv}}$	Observed upper limit	Expected upper limit
ttOL	$0.48^{+0.27}_{-0.27}$	0.95	$0.52^{+0.23}_{-0.16}$
tt1L	$-0.04^{+0.35}_{-0.29}$	0.74	$0.80^{+0.40}_{-0.26}$
tt2L	$-0.09^{+0.22}_{-0.20}$	0.39	$0.42_{-0.12}^{+0.18}$
tīH comb.	$0.08^{+0.16}_{-0.15}$	0.40	$0.30_{-0.09}^{+0.13}$

g vere $E_{T}^{miss} + tt (tW, tq)$

Focus on DM with spin-0 mediator

- Important in models with Min. Flavor Violation
- Yukawa-like coupling to mediator $\propto m_f$

Combination of 0, 1, & 2 lepton searches

Eur. Phys. J. C 80 (2020) 737, JHEP 04 (2020) 174, JHEP 04 (2021) 165

• Set limits on $\sigma/\sigma_{ ext{theory}}$ vs. $m_{\phi(a)}$

⇒ Exclude m_{ϕ} up to 370 GeV

• Interpreted as *H*→invisible

Analysis	Best fit $\mathcal{B}_{H o \mathrm{inv}}$	Observed upper limit	Expected upper limit
ttOL	$0.48^{+0.27}_{-0.27}$	0.95	$0.52_{-0.16}^{+0.23}$
tt1L	$-0.04^{+0.35}_{-0.29}$	0.74	$0.80\substack{+0.40\\-0.26}$
tt2L	$-0.09^{+0.22}_{-0.20}$	0.39	$0.42\substack{+0.18\\-0.12}$
<i>ttH</i> comb.	$0.08^{+0.16}_{-0.15}$	0.40	$0.30_{-0.09}^{+0.13}$

E_{T}^{miss} + S(WW)

Dark Higgs decaying to $WW(qq\ell\nu)$

• Interpreted in two-mediator model with vector $Z' \rightarrow \chi \chi$ and scalar $S \rightarrow WW$

Select events with

- $E_{\rm T}^{\rm miss} > 200 \, {\rm GeV}$
- 1 high- p_T lepton (e/μ)

ATLAS-CONF-2022-029

- Two categories for $W \rightarrow qq$
 - Merged: large-R jet with 2-prong substructure
 - Use "track-assisted reclustering" (TAR) to remove overlapping leptons
 - Resolved: two small-R jets
- CRs to constrain dominate W+jets and tt backgrounds

Also see talk by Christian Weber on searches for exotic Higgs decays.

$E_{\rm T}^{\rm miss}$ + S(WW)

- Reconstruct S→WW→qqℓv up to ambiguity from missing neutrino
- Fit m_s^{min} distribution in Merged and Resolved SRs
- No significant excess
 ⇒ Set limits on mediator masses

$E_{T}^{miss} + S(WW)$

- Reconstruct S→WW→qqℓv up to ambiguity from missing neutrino
- Fit m_s^{min} distribution in Merged and Resolved SRs
- No significant excess
 ⇒ Set limits on mediator masses

Summary Plot: Dark Higgs

Summary Plots: Spin-0 Mediators

Limit on $\sigma/\sigma_{\text{theory}}$ assuming $g_{\chi} = g_q = 1$, $m_{\chi} = 1 \text{ GeV}$

Leptophilic Vector mediator assuming $g_q=0.1$, $g_l=0.01$, $g_{\chi}=1$

- Similar results for Axial-Vector
- Also results for leptophobic couplings $g_q=0.25$, $g_l=0$, $g_{\chi}=1$

CIPANP 2022

 $E_{\mathrm{T}}^{\mathrm{miss}} + tW$

Dominant single-top final state for 2HDM+a

Target events with 0 or 1 lepton from top decay and hadronic *W* decay

- > W-tagged large-R jet or two small-R jets
- > Combined with previous 2 lepton analysis
- Six CRs to constrain main backgrounds (t, tt, W/Z+jets, ttZ)
- Three SRs (binned in E_T^{miss})
 - > $t W \rightarrow$ had had / had lep / lep had

Interpret in 2HDM+a model

- Set limits on $m_{H\pm}$ vs. m_a and tan β
- Also other 2HDM+a results in summary note (ATL-PHYS-PUB-2022-036)

 $E_{\mathrm{T}}^{\mathrm{miss}} + tW$

Dominant single-top final state for 2HDM+a

Target events with 0 or 1 lepton from top decay and hadronic *W* decay

- W-tagged large-R jet or two small-R jets
- Combined with previous 2 lepton analysis
- Six CRs to constrain main backgrounds (t, tt, W/Z+jets, ttZ)
- Three SRs (binned in E_T^{miss})
 - > $t W \rightarrow$ had had / had lep / lep had

Interpret in 2HDM+a model

- Set limits on $m_{H\pm}$ vs. m_a and $\tan\beta$
- Also other 2HDM+a results in summary note (ATL-PHYS-PUB-2022-036)

 $E_{\mathrm{T}}^{\mathrm{miss}} + tW$

Dominant single-top final state for 2HDM+a

Target events with 0 or 1 lepton from top decay and hadronic *W* decay

- > W-tagged large-R jet or two small-R jets
- Combined with previous 2 lepton analysis
- Six CRs to constrain main backgrounds (t, tt, W/Z+jets, ttZ)
- Three SRs (binned in E_T^{miss})
 - > $t W \rightarrow$ had had / had lep / lep had

Interpret in 2HDM+a model

- Set limits on $m_{H\pm}$ vs. m_a and $\tan\beta$
- Also other 2HDM+a results in summary note (ATL-PHYS-PUB-2022-036)

Another recent E_{T}^{miss} +t analysis (ATLAS-CONF-2022-036) presented by Evan Van de Wall.

<u> ATLAS-CONF-2022-038</u>

Dark matter to semi-visible jets

- Sensitive to strongly coupled dark sector
 - \succ Scalar mediator (Φ) acts as portal
 - Focus on t-channel (can probe high masses)
- Signal: 2 semi-visible jets (SVJs)
 - > High $H_T = \Sigma_{jets} p_T$ and high E_T^{miss} close to a jet
 - > ≥1 additional jet to suppress dominant multijet background
 - > Veto e, μ , and ≥ 2 b-tags to suppress other backgrounds
 - Fit 9-bin distribution of two discriminating variables

 $\overline{q}_{\rm dark}$

 $q_{\rm dark}$

 Φ

CIPANP 2022

Dark matter to semi-visible jets

- Sensitive to strongly coupled dark sector
 - \succ Scalar mediator (Φ) acts as portal
 - Focus on t-channel (can probe high masses)
- Signal: 2 semi-visible jets (SVJs)
 - > High $H_T = \Sigma_{jets} p_T$ and high E_T^{miss} close to a jet
 - > ≥1 additional jet to suppress dominant multijet background

CIPANP 2022

ATLAS-CONF-2022-038

Dark matter to semi-visible jets

- Sensitive to strongly coupled dark sector
 - > Scalar mediator (Φ) acts as portal
 - Focus on t-channel (can probe high masses)
- Signal: 2 semi-visible jets (SVJs)
 - > High $H_T = \Sigma_{\text{jets}} p_T$ and high E_T^{miss} close to a jet
 - > ≥1 additional jet to suppress dominant multijet background
 - > Veto e, μ , and ≥ 2 b-tags to suppress other backgrounds
 - Fit 9-bin distribution of two discriminating variables

 $\phi_{\rm max}$

events /

10

 $\overline{q}_{\mathrm{dark}}$

 $q_{\rm dark}$

 Φ

CIPANP 2022

<u> ATLAS-CONF-2022-038</u>

Dark matter to semi-visible jets

- Sensitive to strongly coupled dark sector
 - \succ Scalar mediator (Φ) acts as portal
 - Focus on t-channel (can probe high masses)
- Signal: 2 semi-visible jets (SVJs)
 - > High $H_T = \Sigma_{jets} p_T$ and high E_T^{miss} close to a jet
 - > ≥1 additional jet to suppress dominant multijet background
 - > Veto e, μ , and ≥ 2 b-tags to suppress other backgrounds
 - Fit 9-bin distribution of two discriminating variables

Conclusion

Many recent DM results from ATLAS

- Complementary to direct and indirect detection experiments
- Probing a wide range of final states and models
 - Complete list of ATLAS dark matter results (many more not shown today): <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults</u>
 - > Also see related talks by Will Fawcett, Christian Weber, and Evan Van de Wall
- Significant gains from previous results
 - Larger data set + improved analysis tools + re-optimized selections + improved background modeling

Unfortunately, still no signs of dark matter at the LHC

... But much more data coming in Run 3!!!

Thank you!

And special thanks to:

DOE for supporting this research

The ATLAS Collaboration

Complete list of ATLAS exotic results: twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

The CIPANP 2022 Organizers!

Stillwater, OK

Bonus Material

- > Isolated photon, $p_{T}^{\gamma} > 150 \text{ GeV}$
- > $E_{\rm T}^{\rm miss}$ > 200 GeV, $E_{\rm T}^{\rm miss}$ signif. > 8.5
- > No leptons
- > Up to one jet

Fit SR and 4 CRs in bins of E_{T}^{miss}

 Normalization of main backgrounds from fit to data

CIPANP 2022

top-tagging

Identify high-p_T top quarks ("boosted-tops")

- Large-radius jet with highly collimated sub-jets, including one b-jet
- \Rightarrow Deep Neural Network top-tagger
- Uses kinematics (jet mass, p_T , etc.) ٠ and dispersion of jet constituents (N-subjettiness, splitting scales, and energy correlation functions)

(Some analyses define their own custom taggers, but idea is the same)

Interpreting DM Production

- > Only two parameters: DM mass (m_{χ}) & interaction scale $(M_* \text{ or } \Lambda)$
- > Good approximation if momentum transfer is less than mediator mass $(m_{\rm V})$

Simplified models

- > Valid for higher momentum transfer
- > But more parameters: m_{χ} , m_{V} , g_{q} , g_{χ} , Γ