Searches for new phenomena in final states with 3rd generation quarks using the ATLAS detector

> Evan Van de Wall Oklahoma State University on behalf of the ATLAS collaboration

Why 3rd generation quarks

Third generation Quarks

- Unique signature
 - Use of taggers
 - Suppress Standard Model processes
- Large mass
 - Large coupling to Higgs Boson

Analyses Discussed

- Search for $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$
- Search for single vector-like quark
 - $T \to Ht$
- Search for invisible + single top
- Search for pair production of leptoquarks

ATLAS Exotics	Search	es* -	95%	6 CL	Upper Exe	clusion Limit	s		ATL	S Preliminar
Status: May 2020								$\int \mathcal{L} dt = 0$	3.2 – 139) fb ⁻¹	$\sqrt{s} = 8, 13 \text{ TeV}$
Model	<i>ℓ</i> , γ	Jets†	E ^{miss} T	∫£ dt[ft	p ⁻¹]	Limit		5		Reference
ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH high $\sum p_T$ ADD BH high $\sum p_T$ Bulk RS $G_{KK} \rightarrow WV/ZZ$ Bulk RS $G_{KK} \rightarrow WV/Zt$ Bulk RS $G_{KK} \rightarrow WV/Zt$	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ - \\ 2 \ \gamma \\ - \\ 2 \ \gamma \\ multi-channe \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	1 - 4j -2j $\ge 2j$ $\ge 3j$ -1 2j/1J $\ge 1b, \ge 1J/2$ $\ge 2b, \ge 3j$	Yes - - - Yes 2j Yes Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	Mp Ms Min Min Min Girk mass Girk mass Girk mass girk mass KK mass		4.1 Te 2.3 TeV 2.0 TeV 3.8 TeV 1.8 TeV	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV /	$\begin{array}{l} n=2 \\ n=3 \ \text{HLZ NLO} \\ n=6 \\ n=6, M_{O}=3 \ \text{TeV}, \text{rot BH} \\ n=6, M_{O}=3 \ \text{TeV}, \text{rot BH} \\ k/M_{PI}=0.1 \\ k/M_{PI}=0.1 \\ k/M_{PI}=1.0 \\ \Gamma/m=15\% \\ \text{Ther}(1,1).2(A^{(1,1)} \rightarrow tr) = 1 \end{array}$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 2004.14636 1804.10823 1803.09678
$\begin{array}{c} \mathrm{SSM}\; Z' \rightarrow \ell\ell \\ \mathrm{SSM}\; Z' \rightarrow \tau\tau \\ \mathrm{Leptophotic}\; Z' \rightarrow t\sigma \\ \mathrm{SSM}\; W' \rightarrow \tau\tau \\ \mathrm{SSM}\; W' \rightarrow \tau\nu \\ \mathrm{SSM}\; W' \rightarrow \tau\nu \\ \mathrm{SSM}\; W' \rightarrow \tau\nu \\ \mathrm{HVT}\; W' \rightarrow WZ \rightarrow \ell\nu q q q \\ \mathrm{HVT}\; V' \rightarrow WH \ 2H \ rodel B \\ \mathrm{HVT}\; W' \rightarrow WH/2H \ rodel B \\ \mathrm{HSM}\; W_R \rightarrow th \\ \mathrm{LRSM}\; W_R \rightarrow th \\ \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ r \\ 0 \ del \ B \\ 0 \ e, \mu \\ B \\ multi-channe \\ 0 \ e, \mu \\ multi-channe \\ 2 \ \mu \end{array}$	$-2b \ge 1b, \ge 2J$ $-2j/1J \ge 2J$ $2j/1J \ge 1b, \ge 2J$ $\ge 1b, \ge 2J$ 1J	_ Yes Yes Yes J	139 36.1 139 36.1 139 36.1 139 36.1 139 36.1 139 36.1 80	Z' mass Z' mass Z' mass Z' mass W' mass W' mass V' mass V' mass V' mass W mass W mass We mass		5: 2.42 TeV 2.1 TeV 4.1 Te 3.7 TeV 4.3 TeV 2.33 TeV 3.25 TeV 3.25 TeV 5.6	TeV 6.0 TeV V TeV	$\label{eq:gamma} \begin{split} \Gamma/m &= 1.2\% \\ g_V &= 3 \\ m(N_R) &= 0.5 \text{ TeV}, g_L = g_R \end{split}$	1903.06248 1709.07242 1805.08299 2005.05138 1906.06609 1801.06992 2004.14636 1906.08589 1712.06518 CERN-EP-2020-073 1807.10473 1904.12679
Cl qqqq Cl ℓℓqq Cl ℓℓttt		2 j 	- - Yes	37.0 139 36.1	Λ Λ Λ		2.57 TeV		21.8 TeV η_{LL}^- 35.8 TeV η_{LL}^- $ C_{4t} = 4\pi$	1703.09127 CERN-EP-2020-066 1811.02305
Axial-vector mediator (Dirac Colored scalar mediator (D $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t_{\chi}$ (Dirac	DM) 0 e, μ rac DM) 0 e, μ 0 e, μ c DM) 0-1 e, μ	$\begin{array}{c} 1-4 \ j \\ 1-4 \ j \\ 1 \ J, \leq 1 \ j \\ 1 \ b, 0\text{-}1 \ J \end{array}$	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	m _{med} m _{med} M. m _p	700 GeV	1.55 TeV 1.67 TeV 3.4 TeV		g_q =0.25, g_{χ} =1.0, $m(\chi) = 1 \text{ GeV}$ g =1.0, $m(\chi) = 1 \text{ GeV}$ $m(\chi) < 150 \text{ GeV}$ $\gamma = 0.4, \lambda = 0.2, m(\chi) = 10 \text{ GeV}$	1711.03301 1711.03301 1608.02372 1812.09743
Scalar LQ 1st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e,μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	LQ mass LQ mass LQ ⁴ mass LQ ⁴ mass	1.03 970 G	1.4 TeV 1.56 TeV TeV eV		$\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \mathcal{B}(\mathrm{LQ}_3^u \rightarrow b\tau) = 1 \\ \mathcal{B}(\mathrm{LQ}_3^d \rightarrow t\tau) = 0 \end{array}$	1902.00377 1902.00377 1902.08103 1902.08103
$\begin{array}{c} \text{VLQ } TT \rightarrow Ht/Zt/Wb+,\\ \text{VLQ } BB \rightarrow Wt/Zb+X\\ \text{VLQ } F_{5/3}T_{5/3} T_{5/3} \rightarrow Wt\\ \text{VLQ } Y \rightarrow Wb+X\\ \text{VLQ } B \rightarrow Hb+X\\ \text{VLQ } QQ \rightarrow WqWq \end{array}$	X multi-channe multi-channe + X 2(SS)/≥3 e,μ 1 e,μ 0 e,μ, 2 γ 1 e,μ	$i \\ j \\ \geq 1 \ b, \geq 1 \ j \\ \geq 1 \ b, \geq 1 \ j \\ \geq 1 \ b, \geq 1 \ j \\ \geq 4 \ j \\ \geq 4 \ j$	Yes Yes Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass B mass T _{5/3} mass Y mass B mass Q mass	1. 690 GeV	1.37 TeV 1.34 TeV 1.64 TeV 1.85 TeV 21 TeV		$\begin{array}{l} & \mathrm{SU}(2) \text{ doublet} \\ & \mathrm{SU}(2) \text{ doublet} \\ & \mathcal{B}(T_{5/3} \rightarrow Wt) = 1, \ c(T_{5/3}Wt) = 1 \\ & \mathcal{B}(Y \rightarrow Wb) = 1, \ c_{R}(Wb) = 1 \\ & \kappa_{B} = 0.5 \end{array}$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton t^* Excited lepton v^*	- 1 γ - 3 e,μ 3 e,μ,τ	2j 1j 1b,1j -	-	139 36.7 36.1 20.3 20.3	q* mass q* mass b* mass <i>l</i> * mass y* mass		5. 2.6 TeV 3.0 TeV 1.6 TeV	6.7 TeV 3 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1910.08447 1709.10440 1805.09299 1411.2921 1411.2921
Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles	$ \begin{array}{r} 1 e, \mu \\ 2 \mu \\ 2,3,4 e, \mu (SS \\ 3 e, \mu, \tau \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	≥ 2j 2j) - - -	Yes 	79.8 36.1 36.1 20.3 36.1 34.4	N ⁰ mass N _R mass H ^{##} mass H ^{##} mass multi-charged particle m monopole mass	560 GeV 870 GeV 400 GeV ass 1.	3.2 TeV / 22 TeV 2.37 TeV		$\begin{array}{l} m(W_R) = 4.1 \ {\rm TeV}, g_L = g_R \\ {\rm DY \ production} \\ {\rm DY \ production}, \beta(H_L^{**} \to \ell \tau) = 1 \\ {\rm DY \ production}, q = 5e \\ {\rm DY \ production}, g = 1 g_D, {\rm spin} 1/2 \end{array}$	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130
√s = 8 TeV	partial data	full da	ata		10 ⁻¹		1	1	0 Mass scale [TeV]	

^{*}Only a selection of the available mass limits on new states or phenomena is show †Small-radius (large-radius) jets are denoted by the letter j (J).

³rd Generation Quark Identification (Bottom Quarks)

- b-quarks hadronized and then decay
- Unique properties of decays
 - Longer lifetime
 - Displaced decay vertex
 - Large track multiplicity
 - Large mass
- These properties are used to create a b-tagger

ATLAS-FTAG-2019-005

^{3rd Generation Quark Identification (Bottom Quarks)}

- Many versions of b-taggers
 - MV2 Boosted Decision Tree
 - DL1 Deep Neural Network
 - DL1r Recurrent Neural Network
- Each showed better performance
- Development still ongoing
 - Investigating graphical nueral networks

 D_h

³rd Generation Quark Identification (Top Quarks)

- top quarks decay before they hadronized
 - Branching Ratio ~100% for $t \rightarrow Wb$
- Many searches are for heavy particles
 - top quark is boosted
- Boosted top quarks result in collimated jet
 - Captured by a large-R jet

arXiv:1808.07858

³rd Generation Quark Identification (Top Quarks)

- Compared BDT to DNN
 - Used low level variables
 - $p_{\rm T}$, mass, N-subjetiness, etc.
 - Results are similar
- Trained a DNN with high level variables
 - Topoclusters
- Slight increase in background rejection

Search for $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$

Motivation

- Extension to the Standard Model Higgs
 - Popular in different models such as MSSM
 - Targets 2HDM type-II in the limit that $\sin(\beta \alpha) \rightarrow 1$

Decay Channel

- Same-Sign Multilepton
 - 2 leptons with the same sign
 - \geq 3 leptons

Object Tagging

• DL1r 77% WP for b-tagging

Search for $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$

Backgrounds

- Irreducible
 - Standard Model $t\bar{t}t\bar{t}$
 - $t\bar{t}W/Z/H/\gamma^*$
- Reducible
 - Fake leptons
 - Charge misidentification

Analysis Strategy

- Constrain background in dedicated Control Regions (CR)
- BDT separates SM $t\bar{t}t\bar{t}$ from other SM processes (SM BDT)
 - This BDT will also be sensitive to signal
- BDT separates signal from all SM processes (BSM pBDT)

Search for $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$

Signal Regions (SR)

- Baseline SR
 - $H_T = \sum p_T^{jets} + \sum p_T^{leptons} > 500 \text{ GeV}$
 - \geq 6 jets
 - $\geq 2 \text{ b-tags}$
- BSM SR
 - SM BDT score > 0.55

Search for $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$

Post Fit (m=400 GeV)

Search for $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$

Search for single Vector-Like Quark $T \rightarrow Ht$

Motivation

- Can address the Hierarchy Problem
- Single production dominates at high mass

Decay Channel

- All hadronic
 - $H \rightarrow b\overline{b}$
 - $t \rightarrow Wb$
 - $W \to qq'$

Tagged Objects

- DL1 70% WP for b-tagging
- Boosted top-tagger 80% WP

Search for single Vector-Like Quark

Backgrounds

- Multijet and $t\overline{t}$
- Single top, *tW/Z/H*

Analysis Strategy

- Categorize data by leading and sub leading large-R jets tagging
 - Number of Higgs/top tags
 - b-tags in the jet substructure
- Estimate multijet using a data-driven method
- Fit dijet invariant mass

Search for single Vector-Like Quark $T \rightarrow Ht$

Regions

Defined by large-R jet tagging

	1t 0H ≥2b				VR8		NR		SR	NR
und-leading large-R jet tagging state	0t 1H ≥2b			VR6			SR			SR
	0t 0H ≥2b									
	1t 0H 1b						NR		SR	NR
	0t 1H 1b						VR1			
	0t 0H 1b						VR2			VR7
	1t 0H 0b						VR3		VR5	
	Ot 1H Ob						VR4			
Seco	Ot OH Ob									
		0t 0H 0b	0t 1H 0b	1t 0H 0b	0t 0H 1b	0t 1H 1b	1t 0H 1b	0t 0H ≥2b	0t 1H ≥2b	1t 0H ≥2b

Leading large-R jet tagging state

Validate multijet in VRs

VR1

Search for single Vector-Like Quark $T \rightarrow Ht$

Regions

- Defined by large-R jet tagging
- Normalize $t\bar{t}$ in NR
 - Used in fit to constrain $t\bar{t}$

Leading large-R jet tagging state

Search for single Vector-Like Quark $T \rightarrow Ht$

Regions

• Enriched in signal SR

Leading large-R jet tagging state

Defined by large-R jet tagging

Search for single Vector-Like Quark Postfit $T \rightarrow Ht$

- Simultaneous fit in NR and SR
- No excess observed
- Set limit on σ vs Mass and κ

Search for Invisible + Single top

q

b

0000000000

Motivation

- Search for DM
- g COSCOL Sensitivity for vector-like quarks
 - $T \rightarrow Zt$

Decay Channel

- Non-Resonant DM
 - New vector boson V decays to DM
- Resonant DM
 - New scalar Ø decays to DM and top
- Vector-Like Quark
 - Z decays to neutrinos

Tagged Objects

- DL1r 77% WP for b-tagging
- Boosted top-tagger 50% WP

Search for Invisible + Single top

Backgrounds

- $t\bar{t}$ and V+Jets
- Single top

Analysis Strategy

- Constrain dominate backgrounds normalization in CRs
- Validate normalizations in validation regions
- XGBoost (XGB) classifiers constructs signal regions for the 3 models
 - 1 SR with 0 b-tags
 - 1 SR with 1 b-tag

Search for Invisible + Single top

Regions

- Regions split on b-tags and $\Delta Ø_{\min}(j, E_T^{miss})$
- XGB is trained for each model

Search for Invisible + Single top

Search for Invisible + Single top

Search for Leptoquarks

Motivation

- Account for anomalous muon magnetic moment
- Explain violation in lepton flavor universality
 - B-meson decays

Decay Channel

• Same-sign Mutilepton

Tagged Objects

• DL1r 85% WP for b-tagging

Non-prompt I

48SR-4

Pre-Fit Bkg.

LQ^d_{mix} (1.6 TeV) ttW

 $t\bar{t}(Z/\gamma^*)$

4 SR_e

Uncertainty

Data

3CSR_4

Search for Leptoquarks

Events

Data / Bkg

1.5

0.5

10

ATLAS Preliminary

√s = 13 TeV. 139 fb⁻¹

Signal regions

Post-Fit

Backgrounds

- Irreducible
 - $t\bar{t}W/Z/\gamma^*$ and diboson
- Reducible
 - Non-prompt leptons
 - Charge misidentification

Analysis Strategy

- Split data based on lepton multiplicity
- Define CRs to constrain dominate backgrounds
- Confirm corrections in validation regions
- Fit $m_{\rm eff} = \sum p_{\rm T}^{\rm jets} + \sum p_{\rm T}^{\rm leptons} + E_{\rm T}^{\rm miss}$ in CRs and SRs

Search for Leptoquarks

Region

- 2 leptons 3 CRs
- 3 leptons 4 CRs, 1 VRs, 2 SRs
- 4 leptons 1 VR and 2 SR

Search for Leptoquarks

Search for Leptoquarks

Conclusions

- Broad search for new particles coupling to 3rd generation quarks
- 3rd generation quarks have unique signatures
 - Allow for tagging
 - Suppress standard model background
- Tagging is continued to be improved
- Presented 3 ATLAS results
 - Search for $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$
 - Search for single vector-like quark $T \rightarrow Ht$
 - Search for invisible + single top
 - Search for pair production of leptoquarks
- No excess from the SM prediction were observed
- Continue to search and push the limits
- Run 3 data collection has started!

Thank You!

Thank you for listening!

Thank you to the organizers!

ATLAS Thank you to ATLAS!

Thank you to the DOE for financial support!

