# Multi-boson production and diboson polarisation at ATLAS

Luka SELEM On behalf of the ATLAS Collaboration

> CIPANP 2022 01/09/2022





### Introduction

#### Multi-boson processes as a sensitive probe of Standard Model

- → Electroweak gauge coupling sector
- → Polarisation of massive Spin 1 vector boson

#### Analysis presented here: ATLAS results using Run 2 data

– Measurements of Z $\gamma$ + jets differential cross sections in pp collisions at  $\sqrt{s}$ =13 TeV with the ATLAS detector [ATLAS-CONF-2022-047]

- Combined effective field theory interpretation of Higgs boson and weak boson production and decay with ATLAS data and electroweak precision observables [ATL-PHYS-PUB-2022-037]

 Observation of gauge boson joint-polarisation states in W<sup>±</sup>Z production from pp collisions at √s=13 TeV with the ATLAS detector [ATLAS-CONF-2022-053]

### Zγ+jets differential cross sections

[ATLAS-CONF-2022-047]

### Zγ+jets events

### Study differential cross sections for Zγ+jets events

Provide a sensitive test of QCD predictions (jet activity, parton shower predictions,...)

### Event selection: select hard photon from Initial State Radiation



# Variables for differential cross section



#### 2D Differential cross section:

→ resolution variable in large bins of hard scale variable (different hard scale regime)

- Sudakov logarithm terms:  $p_T^{ll_V}/m_{ll_V}$  in bins of  $m_{ll_V}$ 

- Additionnal QCD emissions:  $p_T^{u}-p_T^{y}$  in bins of  $p_T^{u}+p_T^{v}$  and  $p_T^{uy}$  in bins of  $p_T^{uy}$ 

# Unfolding

Main backgrounds : **Z+jets**, **Pile-up**, **ttγ** 

 $\rightarrow$  Estimated with data driven methods

Differential cross sections: **unfolding** using an **Iterative Bayesian method** 

### Main uncertainties from backgrounds and jet reconstruction

|   | $N_{ m Jet}$ | 0               | 1                | 2   | > 2  |
|---|--------------|-----------------|------------------|-----|------|
|   | Source       | Uncertainty [%] |                  |     |      |
|   | Electrons    | 1.0             | 0.9              | 0.8 | 0.8  |
|   | Muons        | 0.3             | 0.3              | 0.3 | 0.4  |
| С | Jets         | 1.7             | 1.7              | 4.5 | 8.8  |
|   | Photons      | 1.4             | 1.3              | 1.3 | 1.2  |
|   | Pile-up      | 2.1             | 0.8              | 0.2 | 0.3  |
|   | Background   | 1.8             | 1.8              | 3.0 | 4.4  |
|   | Stat. MC     | 0.1             | 0.2              | 0.3 | 0.4  |
|   | Stat. data   | 0.8             | 1.5              | 1.8 | 1.9  |
|   | Luminosity   | 1.7             | 1.7              | 1.7 | 1.7  |
|   | Theory       | 0.6             | 0.2              | 1.4 | 1.0  |
|   | Total        | 4.2             | $\overline{3.8}$ | 6.3 | 10.3 |



#### Theory predictions from 5 sources:

- Sherpa 2.2.4 and 2.2.11, Madgraph : NLO/LO ME + PS
- MATRIX NNLO fixed order calculation
- Powheg NLO + MiNNLO

### Results

No tension with theory in all differential cross sections

- Jet activity generally well described
- Act more as a test of the different theory prediction methods
  - Sherpa 2.2.11 better than Sherpa 2.2.4: benefits from NLO 0,1j ME
  - MiNNLO performs better than MATRIX, struggles in high energy bin



### **Combined EFT interpretation**

[ATL-PHYS-PUB-2022-037]

# Effective Field Theory

Idea: Interpret simultaneously multiple measurements on Higgs processes, multiboson processes, and electroweak precision observables in term of EFT.

**Effective Field Theory** as an **extension** to the Standard:  $\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} +$ 



$$|\mathcal{A}_{\rm SMEFT}|^{2} = |\mathcal{A}_{\rm SM}|^{2} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} 2\operatorname{Re}\left(\mathcal{A}_{i}^{(6)}\mathcal{A}_{\rm SM}^{*}\right) + \sum_{i} \frac{\left(c_{i}^{(6)}\right)^{2}}{\Lambda^{4}} |\mathcal{A}_{i}^{(6)}|^{2} + \sum_{i < j} \frac{c_{i}^{(6)}c_{j}^{(6)}}{\Lambda^{4}} 2\operatorname{Re}\left(\mathcal{A}_{i}^{(6)}\mathcal{A}_{j}^{(6)*}\right) + \sum_{i} \frac{c_{i}^{(8)}}{\Lambda^{4}} 2\operatorname{Re}\left(\mathcal{A}_{i}^{(8)}\mathcal{A}_{j}^{*}\right) + \sum_{i} \frac{c_{i}^{(8)}}{\Lambda^{4}} 2\operatorname{Re}\left(\mathcal{A}_{i}^{(8)}\mathcal{A}_{j}^{*}\right) + \mathcal{O}\left(\frac{1}{\Lambda^{6}}\right)$$

With some additionnal symmetries (flavour, CP etc.): 59 Wilson coefficients considered
 Any measured observable can be parametrised in term of Wilson coefficients:

$$O_b = O_b^{\text{SM}} \left( 1 + \sum_i A_{bi} c_i + \sum_i B_{bi} c_i^2 + \sum_{i < j} C_{bij} c_i c_j \right)$$

Assumption: Wilson coefficient do not affect acceptance, efficiency, backgrounds
 Consider unfolded results

### Input measurements

#### Higgs processes: ATLAS Run 2 dataset

Simplified Template Cross Section as a partition of the phase space of each Higgs production process

#### MultiBoson electroweak processes: ATLAS (partial) Run 2 dataset

Differential cross section of a given observable for each process

#### Electroweak Precision Observables: LEP and SLC data

 $\rightarrow$  8 precision observables

### Overlap:

→ Only for inclusive pp → 4l vs H → 4l, dealt with cut on m<sub>4l</sub> in inclusive

| Decay channel                                                                                                                             |                         |                      | Target Production Modes                             |                                        |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|-----------------------------------------------------|----------------------------------------|--|--|
| $H \to \gamma \gamma$                                                                                                                     |                         |                      | $ggF, VBF, WH, ZH, t\bar{t}H, tH$                   |                                        |  |  |
|                                                                                                                                           | $H \to ZZ$              | $Z^*$                | $ggF, VBF, WH, ZH, t\bar{t}H$                       | $H(4\ell)$                             |  |  |
|                                                                                                                                           | $H \to W$               | $W^*$                | ggF,                                                | VBF                                    |  |  |
|                                                                                                                                           | $H\to\tau\tau$          |                      | ggF, VBF, $WH, ZH, t\bar{t}H(\tau_{had})$           | $\tau_{\rm had})$                      |  |  |
|                                                                                                                                           |                         |                      | WH                                                  | $\overline{G}, ZH$                     |  |  |
|                                                                                                                                           | $H \to b \bar{b}$       |                      |                                                     | VBF                                    |  |  |
|                                                                                                                                           |                         |                      |                                                     | $t\bar{t}H$                            |  |  |
| Process                                                                                                                                   |                         | Import               | ant phase space requirements                        | Observat                               |  |  |
| $pp \to e^{\pm}$                                                                                                                          | $^{\mp}\nu\mu^{\mp}\nu$ | $m_{\ell\ell} > \xi$ | $55  GeV,  p_{\mathrm{T}}^{\mathrm{jet}} < 35  GeV$ | $p_{\mathrm{T}}^{\mathrm{lead.~lep.}}$ |  |  |
| $pp \to \ell^{\pm} \nu \ell^{+} \ell^{-} \qquad m_{\ell \ell} \in (81, pp \to \ell^{+} \ell^{-} \ell^{+} \ell^{-} \qquad m_{4\ell} > 180$ |                         |                      | (81,101)GeV                                         | $m_{ m T}^{WZ}$                        |  |  |
|                                                                                                                                           |                         |                      | 180GeV                                              | $m_{Z2}$                               |  |  |
| $pp \to \ell^+$                                                                                                                           | $\ell\ell^- jj$         | $m_{jj} >$           | $1000  GeV,  m_{\ell\ell} \in (81, 101)  GeV$       | $\Delta \phi_{jj}$                     |  |  |
|                                                                                                                                           |                         |                      |                                                     |                                        |  |  |
|                                                                                                                                           |                         |                      |                                                     |                                        |  |  |



WW

WZ

77

**VBFZ** 

### Statistical Model

Combined Likelihood for all input measurements **parametrised by c**<sub>i</sub>

- $O_b = O_b^{\text{SM}} \left( 1 + \sum_i A_{bi} c_i + \sum_i B_{bi} c_i^2 + \sum_{i < j} C_{bij} c_i c_j \right)$
- Data **not enough to constrain all directions** in parameter space
  - numerical problem for the fit
- Principal component analysis: 28 directions in parameter space identified, rest set at 0



# Results

### With **linear parametrisation** only:

- $\rightarrow$  Most coefficients agree within  $2\sigma$  with SM expectation of 0
- $\rightarrow$  C<sup>[4]</sup><sub>HVV,Vff</sub> driven by discrepancy A<sub>FB</sub><sup>0,b</sup> and A<sub>FB</sub><sup>0,c</sup> in LEP-SLC data



### Joint-polarisation observation

[ATLAS-CONF-2022-053]

# Diboson polarisation status

**Previous measurements at LEP:** Only **diboson process** accessible for such measurements: **e**<sup>+</sup> **e**<sup>-</sup> → **W**<sup>+</sup>**W**<sup>-</sup>

- Single W boson polarisation measurements: L3 [arXiv:0301027], OPAL [arXiv:0312047], DELPHI [arXiv:0801.1235]
- Joint-polarisation measurements: OPAL [arXiv:0009021], DELPHI [arXiv:0908.1023]
- → Never reached observation level sensitivity for longitudinal-longitudinal joint-polarisation

### Measurements at LHC: Single boson polarisation in WZ production

- **ATLAS** : in WZ rest frame, L = **36 fb**-1 [arXiv:1902.05759]
- **CMS** : in Laboratory frame, L = **137 fb**-1 [arXiv:2110.11231]

Newest measurement by ATLAS [CDS:ATLAS-CONF-2022-053] in WZ production with full Run 2 dataset, 139 fb<sup>-1</sup>:

First observation of longitudinal-longitudinal joint-polarisation state in diboson events



- Allow to meaningfully **compare** both
- Longitudinal fractions of both bosons have maximum decorrelation

# Discriminating variable for the fit

**Goal:** Perform a **binned maximum likelihood template fit** to extract simultaneously polarisation fractions

→ Need for a **discriminating variable** to be fitted

**Single boson polarisation** fraction measurement: **cosθ\***<sub>w</sub> and **cosθ\***<sub>z</sub>



Fiducial level templates from 36 fb<sup>-1</sup> measurement [arXiv:1902.05759]

# Variable for the joint-polarisation

**Joint-polarisation** fraction measurement:

- Analytical variable  $|\cos\theta_v|$  not discriminant enough
- Classification DNN between all 4 joint-polarisation
   states: still poorly discriminant between 0T and T0
- Split DNN score for 00 in **4 categories** based on  $\cos\theta^*$





Classification **DNN** input variables (by importance)  $|y_{lw} - y_z|$ P<sub>-</sub>wz P<sub>-</sub>l,w  $\Delta \phi(l^{W}, v)$  $\Delta \phi(l_1z, l_2z)$  $E_{\mathsf{T}}^{\mathsf{miss}}$  $\mathbf{P}_{\mathsf{T}}^{l2,Z}$  $\mathbf{P}_{\mathsf{T}}^{l1,Z}$ 

# NLO accurate polarisation templates

- Direct polarised generation with Madgraph 2.7.3 only at LO+real corrections
  - → Big **bias**, from **10% to 50%** of the fraction values

### **Reweighting using DNNs (Baseline)**

- Acts as some multi-dimensionnal reweighting [arXiv:<u>1907.08209</u>]
- Found to be the least biased method of all tried (almost no bias)



### Reweighting to parton level calculation at NLO QCD of the classification DNN

[Collaboration with theorists A. Denner& G. Pelliccioli arXiv: 2010.07149]

- Still some **bias**, but **reduced to ~10%** of the fraction value
- Used as Modelling uncertainty for alternative polarisation template set choice

# Binned Maximum Likelihood Template Fit



### All joint-polarisation states observed:

- Significance on  $f_{00}$  at 7.1 $\sigma$
- Significance on  $f_{\tau\tau}$  and  $f_{\tau_0}$  >5\sigma

# **Statistical** uncertainties **at the same level** as **systematic** uncertainties, mainly

- Template modelling uncertainties
- QCD scale
- $E_{T^{miss}}$ /jets object reconstruction

### Higher order QCD shape effects on polarisation templates

|                                                                                           | Data                                                 | Powheg+Pythia                                        | NLO QCD                                              |  |  |  |
|-------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--|--|--|
| $W^{\pm}Z$                                                                                |                                                      |                                                      |                                                      |  |  |  |
| $f_{00} \ f_{0\mathrm{T}} \ f_{\mathrm{T}0} \ f_{\mathrm{T}0} \ f_{\mathrm{T}\mathrm{T}}$ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ |  |  |  |

19

### Separating by the W charge:

- Significance on  $f_{00}$  at 6.9 $\sigma$  in W+Z
- Significance on  $f_{00}$  at 4.1 $\sigma$  in W-Z

# Joint-polarisation CL regions



#### Strong correlations between simultaneously extracted fractions

- Confidence Level regions represented for fractions 2 by 2
- No tension with theory: better than 2σ agreement

# **Test of independence** of fractions of W and Z by reparametrising :

$$f_{0T} = f_0^W - f_{00},$$
  

$$f_{T0} = f_0^Z - f_{00},$$
  

$$f_{TT} = 1 + f_{00} - f_0^W - f_0^Z$$
  

$$R_c = \frac{f_{00}}{f_0^W f_0^Z}$$

### $\Rightarrow R_c = 1.54 \pm 0.35$

(if independent,  $R_c=1$ , theory predicts 1.3)

20

### Other results

Single Boson polarisation:  $f_{0}$  and  $f_{L}\text{-}f_{R}$  measured for W and Z boson

- $-\mathbf{f}_0$  mesured with  $5\sigma$  significance even in charge break-down
- No tension with theory, except small tension for  $f_L$ - $f_R$  in W-Z at **2.8** $\sigma$
- WZ inclusive production cross section at Born level:

$$\sigma_{W^{\pm}Z \to \ell' \nu \ell \ell}^{\text{fid.}} = 64.6 \pm 2.1 \text{ fb}$$

**VS** NNLO QCD SM prediction =  $64.0^{+1.5}_{-1.3}$  fb With MATRIX [arXiv:1703.09065]

→Perfect aggreement, similar precision

**Differential cross sections** of polarisation sensitive variables  $\Rightarrow \cos\theta_w^*$ ,  $\cos\theta_z^*$ ,  $|\cos\theta_v|$ , and **the DNN score** 



# CONCLUSION

#### Multi-boson processes studied through three different aspects

- **Differential cross sections** to test QCD predictions
- In Zγ+jets process, good QCD description, no tension
- Global **EFT fit** using multiboson processes along with Higgs production and electroweak precision observables
- → Constrained 28 directions in parameter space
- Polarisation study in WZ production
- → Pioneering measurement providing a new sensitive probe of Standard Model



# Zγ+jets backgrounds

### **Z+jet background:** jet mistaken for a $\gamma$

Data driven sideband method ("ABCD") with cuts on isolation and identification of the photon

**Pile-up events:** γ not from primary vertex

Proportion of pile-up photon estimated from photon converted in tracker in e+e- pair and transferred to unconverted photons: data driven

### ttγ background

Monte Carlo sample scaled using a control region

### Other backgrounds: VV, VVV

→ Less than 1% of selected events, only from Monte Carlo



# EFT Linear + Quadratic constraints

### Using ATLAS data only, **linear + quadratic** constraint available

 $\rightarrow$  No tension either

