

Measurement of the azimuthal decorrelation angle between the leading jet and the scattered lepton in deep-inelastic scattering at HERA

On behalf of the ZEUS Collaboration

14th Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2022) Lake Buena Vista, FL, August 30, 2022

DOE NP contract: DE-SC0013405

Bernd Surrow

1

Analysis Details

Results

Summary and Outlook

Workshop Jets at the EIC 3D imaging (https://indico.bnl.gov/event/ 8066/), November 23-25, 2020

D EIC

Center of Mass Energies:	29GeV - 140GeV
Luminosity:	$10^{33} - 10^{34} \text{ cm}^{-2}\text{s}^{-1} / 10 - 100 \text{ fb}^{-1} / \text{ year}$
Highly Polarized Beams:	70%
Large Ion Species Range:	p to U
Number of Interaction Regions:	Up to 2!

- Award of DOE CDO*: December 2019
- Site selection at BNL: January 2020
- Award of DOE CD1*: June 2021
- O Anticipated award of CD2: ~January 2024
- Anticipated start of construction (CD3): ~April 2025
- Anticipated start of operation (CD4): ~April 2032-2034

* CD: Critical Decisions - DOE Project Approval Process 4

Bernd Surrow

HERA

HERA: Hadron-Electron Ring Accelerator

(Hadron-Elektron Ring Anlage)

World's First Electron-Proton Collider Facility at DESY, Hamburg, Germany

ZEUS Experiment at HERA

- High ET dijet photoproduction at HERA (PRD 76 (2007) 072011, arXiv:0706.3809)
- Inclusive jets with anti-kt and SIScone algorithms (arXiv:1003.2923, Phys. Lett. B 691 (2010) 127-137)
- Inclusive jets in photoproduction (arXiv:1205.6153, Nucl. Phys. B864 (2012), 1-37)
- Isolated photons accompanied by jets in DIS (arXiv:1206.2270, Phys Lett B 715 (2012) 88-97)
- Isolated photons plus jets in PHP (arXiv:1312.1539, Phys.Let B (2014)
 Volume 730, 293-301)
- More on isolated photons plus jets in PHP (arXiv:1405.7127, JHEP 2014 (23))
- O Diffractive di-jet production in DIS (Eur. Phys. J. C 76 (2016) 16)
- Diffractive photoproduction of isolated photons at HERA (arXiv: 1705.10251, Phys. Rev. D 96 (2017) 032006)
- Further studies of isolated photon production with a jet in deep inelastic scattering at HERA (arXiv: 1712.04273, J. High Energ. Phys. (2018) 2018: 32)

Previous azimuthal jet results at hadron-hadron colliders:

Conclusions for results at Tevatron (DO) and LHC (ATLAS and CMS):

- NLO describes data better than LO calculations.
- MC generators describe data fairly well discrepancies at $\Delta \phi \sim \pi$ where soft gluon radiation dominates.
- Suggest employing results to tune MC generators.

Motivation Transverse-Momentum Distribution Functions (TMD)

Probe Transverse-Momentum Distribution Functions (TMD) using azimuthal angular correlations of final state lepton and jet measurements - Complementary to Semi-Inclusive DIS measurements with added benefit of no need for TMD fragmentation functions!

- Lepton-Jet Correlations in DIS at the EIC: X. Liu et al., PRL 122 (2019) 192003
- Lepton-jet correlations in DIS: X. Liu et al., PRD 102 (2020) 094022
- HERA measurements: Probe TMD at small x!

Analysis Details

e

- Event selection
- HERA II (2004-2007) data 0 sample: 330pb⁻¹ at $\sqrt{s} = 318 GeV$
- Jet reconstruction: k_T algorithm 0
- Q²: $10 \text{GeV}^2 < Q^2 < 350 \text{GeV}^2$ 0
- 0 Basic selection criteria: Jets
 - $\Box \quad E_T^{Jet} > 2.5 \text{GeV}$
 - $|\eta_{Jet}| < 1$
- Basic selection criteria: Lepton 0
 - $\Box \quad E_T^{lepton} > 10 \text{GeV}$
 - $140^{\circ} < \theta_{lepton} < 180^{\circ}$
- 14th Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2022) Lake Buena Vista, FL, August 30, 2022

Analysis Details

Simulation - Conceptual framework

14th Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2022) Lake Buena Vista, FL, August 30, 2022 11

Analysis Details

14th Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2022) Lake Buena Vista, FL, August 30, 2022

Bernd Surrow

Results

Results

• Azimuthal angle jet/lepton measurement for different number of jets ($\Delta \phi$ for leading jet!)

• Range: $\pi/2 < \Delta \phi < \pi$

• Agreement with MC simulations (Ariadne 4.12) at the level of 5% (Jets ≥ 1)!

Results

Comparison to theory

Results

- Unfolding and Systematic Uncertainties Final result / Publication plans
 - Unfolding in 1-D will be performed with the TUnfold package
 - Differential cross section measurements will be presented at different p_T, Q² and jet multiplicity regions
 - The following sources of systematic uncertainties were considered for normalized cross sections measurements, consistent with previous ZEUS analyses:
 - The energy of the scattered lepton was varied by its known scale uncertainty of 2%
 - The jet energy scale was varied by 4% for values of $E_{jet}^{T} < 10 \text{ GeV}$ and 2.5% for $E_{jet}^{T} > 10$ GeV
 - The uncertainty due to the selection cuts was estimated by varying the values of the cuts within the resolution of each variable
 - The differences in the measurements obtained by using ARIADNE and Lepto-MEPS to correct the data for detector effects and bin migration
 - The decorrelation angle was varied to account for its resolution effect in the measurements

15

- Comparison to LHC results
 - Decorrelation measurements for different jet multiplicities per event, exhibit similar behavior
 - High jet multiplicity events dominated by soft gluon radiation
 - Agreement with the MC model degrades at high jet multiplicities, pointing to the need for improvements in the theoretical description

- Prelim. ZEUS results of decorrelation measurements of lepton and leading jet in DIS, similar to previous ZEUS γ-jet results and other experiments in proton-proton collisions
- Probe Transverse-Momentum Distribution Functions (TMD) using azimuthal angular correlations of final state lepton and jet measurements Complementary to Semi-Inclusive DIS measurements with added benefit of no need for TMD fragmentation functions!
- The MC predictions from ARIADNE describe the main features of data well. However, some discrepancies are observable!
- Dedicated predictions for ep collisions are in progress!
- Final Differential cross-section measurements/publication will be presented at different p_T , Q² and jet multiplicity bins.
- Decorrelation measurements of lepton and leading jet in DIS will provide an important probe of TMDs at EIC!

Thank you!

Amilkar Quintero (Temple University)

and

Jae Nam (Temple University)