

Recent Heavy-Ion Physics Results

Olga Evdokimov (University of Illinois at Chicago) For the CMS Collaboration

Introduction:

20+ years of QGP exploration on a quest to understand the strong force and confinement by creating a system of deconfined colored quarks and gluons

Experimental evidence of QGP formation in light hadron data:

- Initial medium temperature is well above predicted T_c
- The final system appears to be in thermal equilibrium, and is very explosive
- Medium evolution is well-described by near-ideal hydrodynamics
- Constituent quark degrees of freedom are important at hadronization
- Wealth of new experimental results hones the detailed understanding of medium properties and collision dynamics

UIC

Outline:

- •A (biased) selection of recent experimental results from CMS on:
 - Initial state properties
 - Medium effects on hard probes: heavy flavors and jets
 - New insights on hadronization
 - Ultra-peripheral collisions: QED meets QCD

Nuclear PDFs with Drell-Yan

Initial state through correlations

CMS-PAS-HIN-21-012

Origins of collectivity in small systems can be explored through correlations between average p_T and multiparticle cumulants:

- v_2 - p_T : sign change with N_{ch} (due to initial momentum anisotropy predicted by CGC):
 - Could be seen in the data but disappear with large pseudorapidity gap
 - Measurements are sensitive to nonflow effects
- v_3 - p_T : no sign change
- Model comparisons:
 - IP-Glasma+MUSIC+UrQMD

Hydro

6

Olga Evdokimov (University of Illinois at Chicago)

CIPANP - 2022

Collectivity in small systems

PLB 813 (2021) 136036

• Heavy flavor collective dynamics can shed light of the origin of the collectivity in small systems

Future high precision measurements will provide definitive input on the origins of collectivity

Olga Evdokimov (University of Illinois at Chicago)

UIC

Collectivity in small systems

- New results on Y(1S) flow in 8 TeV pPb: no significant v₂ even in high multiplicity events. Similarly, no significant v₂ was seen in PbPb
- The expectation of similar v_2 for Y and J/ ψ (CGC) seem not to be favored by the data
- No sensitivity to initial geometry for Y measurements with current precision

UIC

Initial state HF probes for PbPb

- Prompt components: $v_3(D^0) > v_3(J/\psi)$ expected hierarchy if light quarks are more sensitive to initial state fluctuations than charm
- Non-prompt components: similar v_3 for $b \rightarrow D^0$ and $b \rightarrow J/\psi$?
- Smaller v_3 for non-prompt components less sensitivity to fluctuations for bottom than charm?

UIC Olga Evdokimov (University of Illinois at Chicago)

QGP effects on heavy quarks

Heavy Flavor R_{AA} at LHC

PRL 123(2019)022001

	27.4 pb ⁻¹ (5.02 TeV pp) + 530 µb ⁻¹ (5.02 TeV Pb-Pb)		
1.6	E CMS D ^o f	rom b hadrons $ y < 1$ $B^{\pm} y < 2.4$	promp
1.4	Prompt D ^o y <1	J/ψ from <i>b</i> hadrons:	
1.2	Charged hadrons $ \eta < 1$	⊕ 1.8< y <2.4	• Mid-p
1	Global uncertainty		• R
€ [€] 0.8 0.6 0.4			• High p • R
0.2 0	2 3 4 5 6 7 8 10 20 p _T (GeV/c)	0-100% centrality 30 40 100	• What a
JIC Olga Evdokimov (University of Illinois at Chicago) CIPANP - 2022			

- Nuclear modification for prompt- and non-prompt D^0 , non-prompt J/ψ , B^{\pm}
- Mid- p_T : flavor dependence of energy loss • $R_{AA}(b) > R_{AA}(c) \sim R_{AA}(light flavors)$
- High p_T : radiative energy loss dominates • $R_{AA}(b) \sim R_{AA}(c) \sim R_{AA}(light flavors)$

• What about v_2 ?

Heavy flavor anisotropies

• D-meson flow measurements

CMS *Preliminary* 0.2 Centrality: 0-10% Centrality: 10-30% 0.15E ----- Prompt D⁰ (PLB 816 (2021) 136253) ---- D⁰ from b quark hadrons 0.1 prompt D⁰ < 0.05 $b \rightarrow D^0$ -0.05 20 25 20 25 10 15 5 10 15 5 p_{_} (GeV/c) p_T (GeV/c)

- Significant v_2 for prompt and non-prompt D^0
- Initial raise consistent with hydro expansion; high p_T path-length dependence of energy loss
- Higher degree of parton-medium coupling for charm than bottom

UIC

CMS-PAS-HIN-21-003

A different look at fluctuations

PRL 129 (2022), 022001

- Charm flow with (prompt) D⁰
 - Prompt D⁰ flow patterns are similar patterns to charged hadrons (but different magnitude) – PLB 816 (2021) 136253
- What about event-by-event fluctuations?

 $v_2{4} / v_2{2}$

- Similar fluctuations for D⁰ and charged hadrons?
- Inclusion of collisional energy loss allows to reproduce data trends better

Heavy flavor anisotropies

• Prompt J/ψ : significant v₂ up to high p_T; b $\rightarrow J/\psi$: smaller v₂, high p_T behavior?

• Stronger (?) v_2 for prompt $\psi(2S)$ – difference in regeneration contributions?

Olga Evdokimov (University of Illinois at Chicago) CIPANP - 2022

Heavy flavor anisotropies

• High p_T – no mass dependence; path-length dependent energy loss

• Low p_T : $v_2(h^{\pm}) > v_2(\text{prompt } D^0) > v_2(\text{prompt } J/\psi) - \text{constituent quark differences? Recombination!}$

Olga Evdokimov (University of Illinois at Chicago)

Evidence for recombination in HF yields

• $B_s(\bar{b}s)$ vs. B+ production: enhancement in more central collision (where strangeness production is most enhanced)

Olga Eudokimov (University of Illinois at Chicago)

Quarkonia Melting

• First observation of Y(3S) in heavy ion collisions: 2018 data, 4 times more data, now with BDT selections

• Nuclear modification factors: Y(3S)<Y(2S)<Y(1S)

Jet quenching for different jet sizes

Jet quenching for different jet sizes

Olga Evdokimov (University of Illinois at Chicago)

- Radius dependence via double R_{AA} ratios:
- Surprisingly consistent with unity for all R and p_T selections studies
- Medium response is important to capture the data trend

Di-jet anisotropies

CMS-PAS-HIN-21-002

- First v₂, v₃, and v₄ measurements for dijets: p_{T1} >120 GeV, p_{T2} >50 GeV, $\Delta \phi > 5/6$
- Exclusive di-jet selection removes non-flow contribution from Fourier analysis
- Significant v_2 for all centralities ~ high p_T charged hadron v_2 : constrains path-length dependence of quenching
- v_3 and $v_4 \sim$ zero: sensitivity to density/geometry fluctuations remains uncertainty-limited

Olga Eudokimou (University of Illinois at Chicago)

UIC

Medium effects on jet shapes

• Energy redistribution in jet constituents: PbPb/pp jet shape ratios for inclusive and heavy flavor jets

- Jet momentum is shifted from small to large angles; carried by softer constituents than in pp
- The large-R momentum excess in PbPb vs pp measurement is larger for b jets than for inclusive jets larger "wake" caused by heavy quarks?

Shockwave medium response to jets

CIPANP - 2022

PRL 128 (2022) 122301

Olga Evdokimov (University of Illinois at Chicago)

- Z-jet angular correlations:
 - Z-boson constrains initial parton kinematics
 - PbPb to pp differences in correlated yields show excess of particles
 - Magnitude and details of the φdependence of excess yield provide new constraints for theoretical modeling

Dimuon photoproduction $\gamma \gamma \rightarrow \mu \mu$

PRL 127 (2021) 122001

Forward neutron multiplicity dependence of dimuon acoplanarity in ultra-peripheral PbPb:

- Impact parameter dependence is observed
- QED calculations incorporating the b-dependence of initial photon p_T reproduce the data

Olga Evdokimov (University of Illinois at Chicago)

UIC

First observation of $\gamma\gamma \rightarrow \tau\tau$

CIPANP - 2022

• Constrains the anomalous magnetic moment $a_{\tau} = \frac{(g-2)_{\tau}}{2}$ for the first time at the LHC

Olga Evdokimov (University of Illinois at Chicago)

26

Shutdown/Technical stop Protons physics Ions Commissioning with beam Hardware commissioning/magnet training

CMS upgrades

• Exciting opportunities around the corner: CMS @ LS2

CMS @ LS3

CMS

- New ZDC improved resolution for neutrons
- MTD particle identification in $|\eta| < 3$

UIC Olga Evdokimov (University of Illinois at Chicago)

CIPANP - 2022

pPb 8.16 TeV

Summary and Outlook

- •Wealth of experimental data on initial state, collision dynamics, and medium properties at LHC energies
- Flavor dependence on parton-medium coupling:
 - $v_2(s, \text{light}) \gtrsim v_2(c) > v_2(b)$; $R_{AA}(b) > R_{AA}(c) \approx R_{AA}(s, \text{light})$
 - New insights on quarkonia melting

UIC

- Jet probes highlight the importance of medium response
- Unique UPC program provides new constraints for the theory
- •Completed and upcoming upgrades will enhance the quality of the data and open new avenues for physics studies

More work to be done!

Olga Evdokimov (University of Illinois at Chicago) CIPANP - 2022

The UIC Group's work is supported by DOE-NP

Olga Evdokimov (University of Illinois at Chicago)