The Search for Permanent Electric Dipole Moments Using Pear-Shaped Nuclei in the FRIB Era

Jaideep Taggart Singh Michigan State University/FRIB 1530-1600, August 31, 2022, Poinsettia/Quince EW: Tests of Symmetries and the Electroweak Interaction 14th Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2022) Marie-Anne Bouchiat

Sakharov's Conditions: Need CP-Violation

VIOLATION OF CP INVARIANCE, C ASYMMETRY, AND BARYON ASYMMETRY OF THE UNIVERSE

A. D. Sakharov Submitted 23 September 1966 ZhETF Pis'ma 5, No. 1, 32-35, 1 January 1967

The theory of the expanding Universe, which presupposes a superdense initial state of matter, apparently excludes the possibility of macroscopic separation of matter from antimatter; it must therefore be assumed that there are no antimatter bodies in nature, i.e., the Universe is asymmetrical with respect to the number of particles and antiparticles (C asymmetry). In particular, the absence of antibaryons and the proposed absence of baryonic neutrinos implies a non-zero baryon charge (baryonic asymmetry). We wish to point out a possible explanation of C asymmetry in the hot model of the expanding Universe (see [1]) by making use of effects of CP invariance violation (see [2]). To explain baryon asymmetry, we propose in addition an approximate character for the baryon conservation law.

The Nobel Foundation

- 1. A baryon number violating interaction exists.
- 2. Departure from thermal equilibrium.
- 3. Both C- & CP-symmetry must be violated.

Standard Model CP-Violation: Not Enough

$$\eta = \frac{\text{matter} - \text{antimatter}}{\text{relic photons}} \propto \sin(\delta)$$

$$\eta_{\text{exp}} \approx 10^{-9} \quad \text{PDG2022}$$

$$\eta_{\text{CKM}} \approx 10^{-26} \quad \text{Huet \& Sather PRD 51:379 (1995)}$$

$$\begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}\exp(-i\delta) \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}\exp(+i\delta) & +c_{12}c_{23} - s_{12}s_{23}s_{13}\exp(+i\delta) & s_{23}c_{13} \\ +s_{12}s_{23} - c_{12}c_{23}s_{13}\exp(+i\delta) & -c_{12}s_{23} - s_{12}c_{23}s_{13}\exp(+i\delta) & c_{23}c_{13} \end{bmatrix}$$

$$\delta = CP$$
-violating "phase"

V =

EDM:Pear-Shaped (CIPANP 2022)

Where do we look for more *CP*-violation?

- Decays of *B*-mesons [Belle II] **08/30: ZLEBCIK CPV @ Belle II**
- Rare decays of b-hadrons [LHCb] 08/30: VILLA CPV @ LHCb
- Angular correlations in the 3γ–decay of ortho-positronium [MSU/Wittenberg]
- D-coefficient in nuclear beta-decay [The MORA Project]
- Nuclear magnetic quadrupole moments [Caltech]
- Polarized neutron transmission through polarized nuclei **08/31: SCHAPER NOPTREX**
- Neutrinos have mass! (PMNS matrix) $[T2K! + 0v2\beta] All the NU Sessions$
- *electric dipole moments: If CPT is good,* then *T*-violation can be used to search for new sources of *CP*-violation!

EDM: Measures the Separation of Charges

"Thunder Cloud as Generator #2" (1971) by Paterson Ewen [Art Gallery of Ontario]

EDMs to E-fields as MDMs to B-fields

$$\mathcal{H} = -\mu\left(\frac{\vec{S}\cdot\vec{B}}{S}\right) - d\left(\frac{\vec{S}\cdot\vec{E}}{S}\right)$$

Theorist: ...trivial application of the Wigner-Eckart Theorem... Experimentalist: ...blah blah blah Wigner-someone something...

2022 EDM Limits: Free of SM "Backgrounds"

Chupp, Fierlinger, Ramsey-Musolf, JTS RMP 91:015001 (2019) & Nature 562:355 (2018) & PRL 124:081803 (2020)

System	Best Limit (95%) 1E-28 <i>e</i> cm	SM estimate 1E-28 <i>e</i> cm	Method (Location)
Neutron	220	~10 ⁻⁴	ultracold neutrons in a bottle (PSI)
"Electron"	0.11	~10 ⁻¹⁰	cold ThO beam (Harvard/Yale)
Hg-199	0.074	~10 ⁻⁶	atoms in vapor cell (UW-Seattle)

Imagine a neutron that is composed of two oppositely charged hemispherical shells:

If the neutron was the size of the Earth, then the maximum thickness of these shells would be less than the diameter of a strand of human hair.

08/31: BISON – Neutron EDM 08/31: EW Neutron EDM (1300-1500), PIEGSA (Next Talk!)

Physics Today, June 2003

EDM:Pear-Shaped (CIPANP 2022)

Statistical Sensitivity

$$\Delta
u =
u_{\uparrow} -
u_{\downarrow} = rac{4dE}{h}$$
 $\sigma_{
u} = rac{\Gamma_{ ext{linewidth}}}{ ext{SNR}}$

Quantum Projection Noise:

Magnetic Field Instabilities: Annoying 4dE 2μ $= u_{\uparrow}u_{\downarrow}$ Instabilities adds noise & Reversible limits the statistical precision. E-field: Reversible High Voltage +Electrodes **B**-bias 2022-08-31 EDM:Pear-Shaped (CIPANP 2022) 16

Electric Field-Correlated Systematic: Killer 4dE 2μ $\Delta u = u_{\uparrow} - u_{\downarrow}$ challenge! Instabilities adds noise & limits the statistical precision. **B**-leakage "False" effects, things which change sign with the electric field, are nasty: "leakage current" **B**-bias

The Gold Standard: Hg-199 EDM Search

- **diamagnetic**, ¹S₀ ground state
- $I = \frac{1}{2}$, no elect. quad. moment
- high Z, (80) rel. atomic struct.
- stable, (17% n.a.) 92% enriched
- high vapor pressure, (10¹³/cm³)
- modest electric field, 10 kV/cm
- 30+ year old experiment!

Limiting systematic appears to be ~10 nm scale motion of vapor cells when HV is switched in the presence of 2nd order *B*-field gradients.

08/31: CHEN – Hg EDM

$$\begin{split} \nu &= 8.3 \ {\rm Hz} & \mbox{The best limit on atomic EDM:} \\ \Delta \nu &\leq 0.1 \ {\rm nHz} & \mbox{EDM(^{199}Hg)} < 0.74 {\rm x10^{-29}} \ e\text{-cm} \ (95\% \ {\rm C.L.}) \\ & \mbox{Graner et al., PRL 116:161601 (2016)} \end{split}$$

EDM:Pear-Shaped (CIPANP 2022)

Diamagnetic Atoms: All electrons are paired.

Neutral Atom

nucleus

electron cloud

Schiff Shielding in Diamagnetic Atoms

• Shielding in Diamagnetic Atoms

Schiff PR 132:2194 (1963)

Shielding Imperfect with Relativistic Atoms & Finite Nuclei

Nuclear Schiff Moment in the Lab Frame

$$S_{z} = \frac{\langle er^{2}z \rangle}{10} - \frac{\langle r^{2} \rangle \langle ez \rangle}{6}$$
$$S \equiv \langle \Psi_{0} | S_{z} | \Psi_{0} \rangle = \sum_{k \neq 0} \frac{\langle \Psi_{0} | S_{z} | \Psi_{k} \rangle \langle \Psi_{k} | V_{PT} | \Psi_{0} \rangle}{E_{0} - E_{k}} + \text{c.c.}$$

Enhanced Nuclear Moments with Parity Doublets

$$S_{z} = \frac{\langle er^{2}z \rangle}{10} - \frac{\langle r^{2} \rangle \langle ez \rangle}{6}$$
$$S \equiv \langle \Psi_{0} | S_{z} | \Psi_{0} \rangle = \sum_{k \neq 0} \frac{\langle \Psi_{0} | S_{z} | \Psi_{k} \rangle \langle \Psi_{k} | V_{PT} | \Psi_{0} \rangle}{E_{0} - E_{k}} + \text{c.c.}$$

Parity Doublet

• Nearly degenerate parity doublet

Haxton & Henley PRL 51:1937 (1983)

 $(\alpha) (B)$

$$\Delta E \qquad |\Psi_1\rangle = \frac{|\alpha\rangle - |\beta\rangle}{\sqrt{2}} \\ |\Psi_0\rangle = \frac{|\alpha\rangle + |\beta\rangle}{\sqrt{2}}$$

Enhanced Schiff Moments in Deformed Nuclei

$$S_{z} = \frac{\langle er^{2}z \rangle}{10} - \frac{\langle r^{2} \rangle \langle ez \rangle}{6}$$
$$S \equiv \langle \Psi_{0} | S_{z} | \Psi_{0} \rangle = \sum_{k \neq 0} \frac{\langle \Psi_{0} | S_{z} | \Psi_{k} \rangle \langle \Psi_{k} | V_{PT} | \Psi_{0} \rangle}{E_{0} - E_{k}} + \text{c.c.}$$

Parity Doublet

- Nearly degenerate parity doublet Haxton & Henley PRL 51:1937 (1983)
- Large intrinsic Schiff moment due to octupole deformation Auerbach, Flambaum, & Spevak PRL 76:4316 (1996)

$$\Delta E \qquad |\Psi_1\rangle = \frac{|\alpha\rangle - |\beta\rangle}{\sqrt{2}} \\ |\Psi_0\rangle = \frac{|\alpha\rangle + |\beta\rangle}{\sqrt{2}}$$

Enhanced Sensitivity in Radium-223/Radium-225

$$S_{z} = \frac{\langle er^{2}z\rangle}{10} - \frac{\langle r^{2}\rangle\langle ez\rangle}{6}$$
$$S \equiv \langle \Psi_{0}|S_{z}|\Psi_{0}\rangle = \sum_{k\neq 0} \frac{\langle \Psi_{0}|S_{z}|\Psi_{k}\rangle\langle \Psi_{k}|V_{PT}|\Psi_{0}\rangle}{E_{0} - E_{k}} + \text{c.c.}$$

 $|\Psi_1
angle = rac{|lpha
angle - |eta
angle}{\sqrt{2}}$ $|\Psi_0
angle = rac{|lpha
angle + |eta
angle}{\sqrt{2}}$

- Nearly degenerate parity doublet Haxton & Henley PRL 51:1937 (1983)
- Large intrinsic Schiff moment due to octupole deformation Auerbach, Flambaum, & Spevak PRL 76:4316 (1996)

Total Enhancement Factor: EDM (²²⁵Ra) / EDM (¹⁹⁹Hg)

	Skyrme Model	Isoscalar	Isovector		
	SIII	300	4000		
	SkM*	300	2000		
	SLy4	700	9000		
²²⁵ Ra: Dobaczewski & Engel PRL 94:232502 (2005) ¹⁹⁹ Hg: Ban et al. PRC 82:015501 (2010)					

EDM:Pear-Shaped (CIPANP 2022)

55 keV

25

The Laser Trap Ra EDM Experiment @ ANL **Beam Focusing** (Transverse Cooling) High Voltage $\vec{B}\vec{E}$ Radium Electrodes Oven **Beam Slowing** (Zeeman Slower) Magnetic Shielding Magnet Coils Pump/Probe Beam (Optical Pumping & Shadow Imaging) Atom Transport **Optical Trap** ("Bus" ODT) ("Holding" ODT) **Atom Collection** (MOT)

The Laser Trap Ra EDM Experiment @ ANL

 $T \approx 3 \text{ days}$ $\tau \approx 20 \text{ sec}$

 $N_d \approx 10^2$

²²⁵Ra

Nuclear Spin = $\frac{1}{2}$

 $t_{1/2} = 15 \text{ days}$

Low vapor pressure

2022-08-31

EDM search using atoms held in Optical Lattice

Romalis & Fortson PRA 59:4547 (1999) Chin et al. PRA 63:033401 (2001) Bishof et al. PRC 94:025501 (2016)

- Atoms concentrated in a very small region
- Long coherence time (100 s)
- negligible "v x E" systematics
- High electric field (>100 kV/cm) in vacuum
- Light-induced systematic effects can be controlled!

EDM:Pear-Shaped (CIPANP 2022)

Ra EDM: Completely Statistics Limited

Dec 2014: PRL 114:233002: $|d(Ra-225)| < 50x10^{-23} e \text{ cm } (95\%)$ June 2015: PRC 94:025501: $|d(Ra-225)| < 1.4x10^{-23} e \text{ cm } (95\%)$

Effect	Current uncertainty	α scenario uncertainty	β scenario uncertainty
E-squared effects	1×10^{-25}	7×10^{-29}	7×10^{-31} a
B-field correlations	1×10^{-25}	5×10^{-27}	3×10^{-29a}
Holding ODT power correlations	6×10^{-26}	9×10^{-30}	9×10^{-32a}
Stark interference	6×10^{-26}	2×10^{-27}	3×10^{-29a}
E-field ramping	9×10^{-28}	2×10^{-29}	N/A
Blue laser power correlations	7×10^{-28}	1×10^{-31}	1×10^{-31}
Blue laser frequency correlations	4×10^{-28}	8×10^{-30}	8×10^{-30}
$\mathbf{E} \times \mathbf{v}$ effects	4×10^{-28}	7×10^{-30}	N/A
Leakage current	3×10^{-28}	9×10^{-29}	N/A
Geometric phase	3×10^{-31}	7×10^{-30}	5×10^{-33}
Total	2×10^{-25}	5×10^{-27}	$4 imes 10^{-29}$ a

^aThis uncertainty will improve with the statistical sensitivity of the experiment.

More efficient detection of atoms: STIRAP + optical cycling More efficient laser cooling and trapping: 1 ppm to 100 ppm Higher electric field: 70 kV/cm to >200 kV/cm **Goal is <10⁻²⁵** *e* **cm over 3 years and then 10⁻²⁸** *e* **cm long term**

Recent Results in Xe-129 and Yb-171

Ra-225: PRC 94:025501 (2016): < **1.4x10⁻²³** *e* **cm (95%)** (laser trap experiment)

Xe-129: PRL 123:143003 (2019): **<1.4x10⁻²⁷** *e* **cm (95%)** (gas cell experiment)

Yb-171: PRL 129:083001 (2022): < **1.5x10⁻²⁶** *e* **cm (95%)** (laser trap experiment, very similar to Ra experiment)

Punchlines: The new physics constraints within the hadronic sector for all three of these experiments are roughly equal. The Yb experiment validates the laser trap approach for Ra for at least another three orders of magnitude.

2022-08-31

EDM:Pear-Shaped (CIPANP 2022)

Protactinium-229 (229Pa) *may* be unusually sensitive!

Parity Doublet

Pa-229: Haxton & Henley PRL 51:1937 (1983) I. Ahmad et al Phys. Rev. C 92:024313 (2015) Dobaczewski et al PRL 121, 232501 (2018)

Isotope	ΔE (keV)	$\tau_{1/2}$ (sec)	sensitivity
Hg-199	1800	stable	1
Rn-223	$\sim 10^{2}$?	10 ³	10 ²
Ra-225	55	106	10 ³
Pa-229	(0.06 +/- 0.05)?	10 ⁵	106

FRIB will make lots of Pa-229!

EDM:Pear-Shaped (CIPANP 2022)

Planned Pa-229 Nuclear Spectroscopy @ FRIB!

We have used superconducting high-resolution radiation detectors to measure the energy level of metastable 235m U as 76.737 \pm 0.018 eV. The 235m U isomer is created from the α decay of 239 Pu and embedded directly into the detector. When the 235m U subsequently decays, the energy is fully contained within the detector and is

FIG. 1. Schematic of experimental setup: 235m U recoil ions produced by the decay of 239 Pu are embedded in the STJ detectors, which measure their subsequent decay into the 235 U ground state.

Molecular Electron EDM Experiments: Large Internal E-field and Control of Systematics

ACME – ThO^{*} Neutral Beam (Harvard / Northwestern / Chicago) C. Panda (Harvard 2018) Nature 562 355 (2018)

Veon Buffer Gas

EDM:Pear-Shaped (CIPANP 2022)

FRIB Opportunity: Short-Lived Radioactive Molecule Experiments!

Opportunity:

nuclear Schiff enhancement ~10³⁺ *and* ~100 MV/cm effective E-field (compared to <1 MV/cm lab E-fields)

Potential: x10⁵ to x10¹⁰ more physics sensitivity than the Hg-199 experiment <u>on a per atom basis</u> (atoms from FRIB)

Key Challenge: how do we efficiently produce and probe short-lived radioactive molecules? 09/02: GARCIA RUIZ - Radioactive Molecules

Punchline: we need an OFFLINE AREA to form beams of HARVESTED ISOTOPES for use in LONG INTEGRATION TIME experiments @ FRIB!

Neutral Molecule Laser Trap (ANL/Chicago/MIT/Temple)

Opportunity: Uses demonstrated modern quantum manipulation techniques **Challenge:** Efficient loading of trap **Status:** Laser spectroscopy underway! Nature 581:396 (2020) PRL 127:033001 (2021) New J. Phys. 24 025005 (2022)

EDM:Pear-Shaped (CIPANP 2022)

Molecular Ion Trap (UCSB/Caltech)

Opportunity: Uses demonstrated modern quantum manipulation techniques in a "general" purpose ion trap.

Challenge: Probes only one molecular ion at a time **Status:** Molecule formation, trapping, and spectroscopy all underway! A.M. Jayich

Fan et al. PRL 126:023002 (2021) Yu & Hutzler PRL 126:023003 (2021) https://physics.aps.org/articles/v14/3

Molecules in Noble Gas Solids (York/Toronto/MSU)

- Efficient trapping of a wide variety of species
- Stable and chemically inert confinement
- Transparent in the optical regime for optical probing
- long T₁: solid Xe-129 (I=1/2) 10² s @ 10 G & 77 K Gatzke, Cates, et al. PRL 70 693 (1993) 10⁶ s @ 10³ G & 4.2 K
- long T_2 : 10³ s for 1 ppm diamagnetic (μ_N) spin impurities Van Vleck PR 74 1168 (1948)
- Under certain conditions, polar molecules orient themselves along the crystal axes:
 Vutha et al. PRA 98:032513 (2018)
- Very high number densities
- Challenge: quantum control in medium

Deposit Molecules into Noble Gas Solids (MSU)

Reprinted (adapted) with permission from Page et al. Analytical Chemistry V80 p1800 (2008). Copyright 2008 ACS. Amitchell125 at English Wikipedia [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

²²⁹Pa lons in Optical Crystals (MSU)

- Large intrinsic sensitivity to BSM physics
 - high Z (¹⁹⁹Hg, ²⁰⁵Tl, ²²⁵Ra, ^{221,223}Rn, ²²⁹Pa)
 - octupole deformed nucleus (²²⁵Ra, ^{221,223}Rn, ²²⁹Pa)
- Large *E*-field or *B*-field gradient (MQM) to amplify observable
 - local crystal fields (1-10 MV/cm) (solids)
- Repeat the measurement as many times as possible
 - large number of nuclei (stable)
 - long integration time (FRIB: steady supply for short $\tau_{1/2}$)
 - long trapping time: nuclei "stored" in the solid
 - long coherence time possible?
- High efficiency extraction of experimental signal
 - near unity capture and trapping efficiency in solid
 - optical detection via laser probing
 - optically-accessible nuclear spins
 - inhomogenous broadening address each nucleus individually?
- Control of systematics

JTS Hyp. Int. 240:29 (2019)

Long Coherence Times of Lanthanide Ion Nuclei

doi:10.1038/nature14025

\equiv 8 JANUARY 2015 | VOL 517 | NATURE | 177

Optically addressable nuclear spins in a solid with a six-hour coherence time

Manjin Zhong¹, Morgan P. Hedges^{1,2}, Rose L. Ahlefeldt^{1,3}, John G. Bartholomew¹, Sarah E. Beavan^{1,4}, Sven M. Wittig^{1,5}, Jevon J. Longdell⁶ & Matthew J. Sellars¹

Under the right experimental conditions (magnetic field of 1.35 T and temperature of 2 K), using a specially designed pulse sequence (KDD_x), the T₂ of ¹⁵¹Eu³⁺ (I=5/2) embedded in Y₂SiO₅ was measured to be over 6 hours.

Single Ion Implantation & Manipulation

Received 19 Jan 2014 | Accepted 15 Apr 2014 | Published 14 May 2014

DOI: 10.1038/ncomms4895

Coherent properties of single rare-earth spin qubits

P. Siyushev^{1,*}, K. Xia^{1,*}, R. Reuter¹, M. Jamali¹, N. Zhao², N. Yang³, C. Duan⁴, N. Kukharchyk⁵, A.D. Wieck⁵, R. Kolesov¹ & J. Wrachtrup¹

Left: well-controlled ion implantation of Ce³⁺ (yellow bar = 10 microns) Middle: individual Ce site (yellow bar = 2 microns) Right: antibunching in photon correlation data indicates single emitter

The Nuclear Pear Factory: A Proposed NSF Center

Thanks For Your Attention!

- 1. Detecting a non-zero EDM would be an unambiguous signature of physics Beyond the Standard Model of Particle Physics.
- 2. Searches in a variety of complementary systems are needed since the source of any new possible *CP*-violation is not known and to confirm results with different systematics.
- 3. Pear-shaped nuclei such as Radium-225 and Protactinium-229 have significantly enhanced sensitivity to *CP*-violation originating within the nuclear medium.
- 4. Polar molecules have and will continue to revolutionize searches for *CP*-violation in both the leptonic and (soon!) the hadronic sectors.
- 5. Short-lived radioactive molecules potentially have $x10^5$ to $x10^{10}$ more new physics sensitivity than Hg-199 in the hadronic sector on a per atom basis.
- 6. <u>Isotope harvesting and radiochemistry at FRIB</u> enables access to these enhancer isotopes in practical quantities for ultrasensitive EDM searches.

singhj@frib.msu.edu web: spinlab.me twitter: @spinlabmsu

NSF

EDM:Pear-Shaped (CIPANP 2022)

Junior Faculty Search @ Michigan State/FRIB: Fundamental Symmetries With Rare Isotopes

