Exploiting stellar explosion induced by the QCD phase transition in large-scale neutrino detectors

Anna M. Suliga

arXiv: 2208.14469 with T. Pitik, D. Heimsoth, and B. Balantekin

CIPANP Orlando, FL, September 1, 2022

Introduction and Motivation

Neutrinos:

- $\sim 10^{58}$ of them emitted from a single core collapse
- only they (+ GW) can reveal the deep interior conditions
- only they (+ GW) are emitted from the collapse to a black hole

Why core-collapse supernovae are good physics probes?

Advantages

- extreme physical conditions not accessible on Earth: very high densities, long baselines etc.
- within our reach to detect (SK, JUNO, XENON, PandaX...)

What can we learn with a variety of detectors?

- explosion mechanism
- yields of heavy elements
- compact object formation
- neutrino mixing
- non-standard physics

Bethe & Wilson (1985), Fischer et al. (2011)...

Woosley et al. (1994), Surman & McLaughlin (2003)...

Warren et al. (2019), Li, Beacom et al. (2020)...

Balantekin & Fuller (2013), Tamborra & Shalgar (2020)... Suliga et al. (2019), (2020) Suliga & Tamborra (2020) .2/13

Why core-collapse supernovae are good physics probes?

Advantages

- extreme physical conditions not accessible on Earth: very high densities, long baselines etc.
- within our reach to detect (SK, JUNO, XENON, PandaX...)

What can we learn with a variety of detectors?

- explosion mechanism
- yields of heavy elements
- compact object formation
- neutrino mixing
- non-standard physics

Bethe & Wilson (1985), Fischer et al. (2011)...

Woosley et al. (1994), Surman & McLaughlin (2003)...

Warren et al. (2019), Li, Beacom et al. (2020)...

Balantekin & Fuller (2013), Tamborra & Shalgar (2020)... Suliga et al. (2019), (2020) Suliga & Tamborra (2020) ..2/13

Why core-collapse supernovae are good physics probes?

Advantages

- extreme physical conditions not accessible on Earth: very high densities, long baselines etc.
- within our reach to detect (SK, JUNO, XENON, PandaX...)

What can we learn with a variety of detectors?

- explosion mechanism
- yields of heavy elements
- compact object formation
- neutrino mixing
- non-standard physics

Bethe & Wilson (1985), Fischer et al. (2011)...

Woosley et al. (1994), Surman & McLaughlin (2003)...

Warren et al. (2019), Li, Beacom et al. (2020)...

Balantekin & Fuller (2013), Tamborra & Shalgar (2020)... Suliga et al. (2019), (2020) Suliga & Tamborra (2020) .2/13

QCD phase diagram

- Does the protocompact star contain non-leptonic degrees of freedom other than neutrons and protons?
- How to identify the presence of quark matter in astrophysical objects?

Where the quark matter can appear in atrophysical objects?

- quark matter in accreting neutron stars Lin et al. (2006), Abdikamalov et al. (2008), Espino, Paschalidis (2021), ...
- in protoneutron stars after the CCSN explosion Pons et al. (2001), Keranen et al. (2004)
- in protocompact stars during early postbounce phase Takahara et al. (1988), Sagert et al. (2008), Fischer, Sagert et al. (2011) ...

Where the quark matter can appear in atrophysical objects?

- quark matter in accreting neutron stars Lin et al. (2006), Abdikamalov et al. (2008), Espino, Paschalidis (2021), ...
- in protoneutron stars after the CCSN explosion Pons et al. (2001), Keranen et al. (2004)
- in protocompact stars during early postbounce phase Takahara et al. (1988), Sagert et al. (2008), Fischer, Sagert et al. (2011) ...

Different phases of core-collapse supernova explosion

• Infall phase, ν_e burst ~ 40 ms

- Accretion phase, $\sim 100 \text{ ms}$
- Cooling phase, $\sim 10 \text{ s}$

What drives the supernova supernova explosions?

- neutrino heating Colgate & White (1966), Bethe & Wilson (1985)
- magneto-rotational mechanism LeBlanc and Wilson (1970), Takiwaki et al. (2009)
- particles beyond the Standard Model Fuller et al. (2008), Suliga et al. (2020) ...
- phase transition to quark matter Sagert et al. (2008)...

Different phases of core-collapse supernova explosion

 Infall phase, ν_e burst ~ 40 ms

Shock

wave

- Accretion phase, $\sim 100 \,\mathrm{ms}$
- Cooling phase, $\sim 10 \mathrm{s}$

What drives the supernova supernova explosions?

- neutrino heating Colgate & White (1966), Bethe & Wilson (1985)
- magneto-rotational mechanism LeBlanc and Wilson (1970), Takiwaki et al. (2009)
- particles beyond the Standard Model Fuller et al. (2008), Suliga et al. (2020) ...
- phase transition to quark matter Sagert et al. (2008)...

Numerical modeling

Neutrino Emission Properties from the QHPT CCSN

- second sharp neutrino burts dominated by $\bar{\nu}_e$
- non-exploding models can explode

Astrophysical neutrino detection

Large scale neutrino detectors

Hyper-Kamiokande (2027)

fiducial volume	fiducial volume	fiducial volume
217 kton	3500 kton	40 kton
main detection channel	main detection channel	main detection channel
$\bar{\nu}_e + p \rightarrow e^+ + n$	$\bar{\nu}_e + p \rightarrow e^+ + n$	$\nu_e + \mathrm{Ar} \rightarrow e^- + {}^{40}\mathrm{K}^*$

Neutrino Event Rates

Impact of neutrino conversions

- Event rate in the antineutrino detectors comparable for both conversion scenarios
- Event rate in the neutrino detector larger for the full conversion case

$$R(t) = N_t \int_{E_{\nu}^{\min}}^{\infty} dE_{\nu} \int_{E_{th}}^{E_{\max}} dE \ \varepsilon \sigma_i(E, E_{\nu}) \ F_{\nu_{\beta}}(E_{\nu}, t)$$

Main Results

Timing the Neutrino Signal

Detectors	No conversion	Full conversion		
B_{ij} [ms]				
IC-HK	-0.32 ± 0.10	-0.32 ± 0.10		
IC-DUNE	-0.11 ± 0.48	-0.27 ± 0.20		
HK-DUNE	0.22 ± 0.50	0.05 ± 0.22		
$\delta(\theta_{ij}) \text{ (min, max) [deg]}$				
IC-HK	(0.30, 5.00)	(0.29, 4.90)		
IC-DUNE	(1.00, 10.67)	(0.41, 6.90)		
HK-DUNE	(2.27, 12.85)	(1.00, 8.54)		
95% C.L. upper limit on m_{ν} [eV]				
IC	$0.16^{+0.03}_{-0.04}$	$0.21^{+0.05}_{-0.05}$		
HK	$0.22^{+0.05}_{-0.06}$	$0.30^{+0.07}_{-0.09}$		
DUNE	$0.80^{+0.21}_{-0.29}$	$0.58^{+0.14}_{-0.19}$		

$$\Delta t_{ij}^{\text{true}} = \frac{(\mathbf{r}_i - \mathbf{r}_j) \cdot \mathbf{n}}{c} = \frac{D_{ij} \cos \theta}{c}$$
$$\Delta t_{ij}^{\text{measured}} = \Delta t_{ij}^{\text{true}} + B_{ij}$$

Determination of the uncertainty of the CCSN localization

Detectors	No conversion	Full conversion	
	B_{ij} [ms]		
IC-HK	-0.32 ± 0.10	-0.32 ± 0.10	
IC-DUNE	-0.11 ± 0.48	-0.27 ± 0.20	
HK-DUNE	0.22 ± 0.50	0.05 ± 0.22	
$\delta(\theta_{ij}) \text{ (min, max) [deg]}$			
IC-HK	(0.30, 5.00)	(0.29, 4.90)	
IC-DUNE	(1.00, 10.67)	(0.41, 6.90)	
HK-DUNE	(2.27, 12.85)	(1.00, 8.54)	
95% C.L. upper limit on m_{ν} [eV]			
IC	$0.16^{+0.03}_{-0.04}$	$0.21^{+0.05}_{-0.05}$	
HK	$0.22^{+0.05}_{-0.06}$	$0.30^{+0.07}_{-0.09}$	
DUNE	$0.80^{+0.21}_{-0.29}$	$0.58_{-0.19}^{+0.14}$	

Determination of the CCSN localization

- improvement by 4.5-10 times compared to neutronization burst
- comparable results for black hole forming supernovae
- not far off from elastic scattering on electrons

Sensitivity to the Absolute Neutrino Mass

• up to $\sim 10x$ improvement compared to neutronization burst

• more stringent limits than from the laboratory experiments $(0.8 \text{ eV})_{12/13}$

Summary and Conclusions

- QCP phase transition in the collapsing star can:
 - produce second core bounce
 - result in release of a second sharp neutrino burst
 - lead to *r*-process elements production
- Detection of the phase transition induced neutrino burst:
 - indicates the QCD phase transition in supernova
 - improves the precision of the supernova triangulation
 - sets competitive limits on the neutrino mass

- QCP phase transition in the collapsing star can:
 - produce second core bounce
 - result in release of a second sharp neutrino burst
 - lead to *r*-process elements production
- Detection of the phase transition induced neutrino burst:
 - indicates the QCD phase transition in supernova
 - improves the precision of the supernova triangulation
 - sets competitive limits on the neutrino mass

Thank you for the attention!

Backup

Histograms: Timing the neutrino signal

Histograms: neutrino mass limit

Relaxing Wilk's theorem approximation

The Role of the QCD Phase Transition in CCSNe

- Three equations of state: DD2F (1st order PT, Gibbs), STOS-B145 (1st order PT, Maxwellian), and CMF (smooth crossover)
- Sucessful explosions only for 2 models in DD2F
- Failed explosions in DD2F and STOS-B145

Pia Jakobus et al. (2022)

Neutino signals: DD2F

- Low explosion energies $\sim 10^{50}~\rm erg$

- Majority of models have second bounce 37/40
- Failed explosions only for zero metallicity

Pia Jakobus et al. (2022)

Neutino signals: STOS-B145, CMF

- Relatively small increase in luminosity during 2nd bounce
- No models successfuly explode
- No 2nd bounces in the CMF models

Pia Jakobus et al. (2022)

Quark deconfinement as a supernova explosion engine for massive blue supergiant stars

Fisher et al. (2017)