

Rupert Leitner, Charles University, Prague on behalf of Daya Bay Collaboration

The Daya Bay is an international reactor antineutrino experiment located in southern China near commercial nuclear power plants.

Daya Bay Collaboration

256 collaborators from 42 institutions: Europe (2) Charles University, JINR Dubna Charles University, JINR Dubna Charles University, JINR Dubna

North America (16)

Brookhaven Nat'l Lab, Illinois Institute of Technology, Iowa State, Lawrence Berkeley Nat'l Lab, Princeton, Rensselaer Polytechnic, Siena College, Temple Univ., UC Berkeley, Univ. of Cincinnati, Univ. of Houston, UIUC, Univ. of Wisconsin, Virginia Tech, William &

Mary, Yale

Asia (23)

Beijing Normal Univ., CNGPG, CIAE, Chongqing Univ., Dongguan Polytechnic, ECUST, IHEP, Nanjing Univ., Nankai Univ., NCEPU, NUDT, Shandong Univ., Shanghai Jiao Tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Xi'an Jiaotong Univ., Zhongshan Univ., Chinese Univ. of Hong Kong, Univ. of Hong Kong, National Chiao Tung Univ., National Taiwan Univ., National United Univ.

R. Leitner CIPANP 2022

South America (1) Catholic Univ. of Chile

Daya Bay experiment

EH3 Overburden: ~860 m.w.e. Weighted baseline: ~1650 m

Tunnel

00

Daya Bay

reactors

EH2 Overburden: ~265 m.w.e. Weighted baseline: ~500 m

EH1 Overburden: ~250 m.w.e. Weighted baseline: ~360 m Ling Ao II reactors

3 pairs of commercial reactors, each with 2.9 GW thermal power, total flux of ~10²¹ electron antineutrinos / s

Eight identically designed underground detectors deployed in three experimental halls EH1, EH2 and EH3 at different baselines.

Data sets analyzed

Three physics runs. Data available for analyses ~2700 days

	EH1 EH2 EH3			Start date – End date		
6-AD	2	1	3	Dec 2011 – July 2012		
8-AD	2	2	4	Oct 2012 – Dec 2016		
7-AD	1	2	4	Jan 2017 – Dec 2020		

Year	Calendar days	EH1	EH2	EH3	Total IBD's
$2018 \; (\text{PRL}\; \textbf{121}, \text{241805})$	1958	1,794,417	1,673,907	495,421	3,963,745
2022	3158	2,236,810	2,544,894	764,414	5,546,118

Correlation with operation of reactors.

A selection of events from the measurement of the coincidence of the prompt and delayed signals

Energy resolution

R. Leitner CIPANP 2022

6

Gain of photomultiplier tubes

- Single-photoelectron dark noise
- Weekly LED monitoring

Energy calibration

- Weekly ⁶⁸Ge, ⁶⁰Co, ²⁴¹Am-¹³C
- Spallation neutrons
- Natural radioactivity

Nonuniformity corrections

Relative uncertainty in energy scale: ~0.2% Uncertainty in absolute energy ~0.5%

Energy spectrum measured in far hall EH3

Due to oscillations, the measured spectrum in EH3 shows a deficit compared to the spectrum predicted from measurements in EH1 and EH2.

Background

Uncorrelated background Accidental

Correlated background

⁹Li/⁸He spallation product produced by cosmic-ray muons inside the antineutrino detector AD

Fast neutrons+Muon-x neutrons produced outside of the AD but enters the active volume of the AD + muon decay and spallation products

²⁴¹Am-¹³C neutron calibration source resides inside the calibration unit ACU

 $^{12}_{12}$ $^{13}C(\alpha,n)^{16}O \alpha$ from decay of natural radioactive isotope in the liquid scintillator

Electron (anti)neutrino disappearance does not depend on CP violating phase δ , nor mixing angle θ_{23} , matter effect is negligible.

$$P_{\overline{\nu}e \to \overline{\nu}e}^{3x3} = 1 - \cos^4 \theta_{13} \sin^2(2\theta_{12}) \sin^2\left(\frac{\Delta m_{21}}{4\hbar c} \frac{L}{E}\right) \text{ sub-percent contribution} at the first local minimum.}$$

$$-\sin^2(2\theta_{13}) \begin{bmatrix} \cos^2 \theta_{12} \sin^2\left(\frac{\Delta m_{31}^2 L}{4\hbar c} \frac{L}{E}\right) + \sin^2 \theta_{12} \sin^2\left(\frac{\Delta m_{32}^2 L}{4\hbar c} \frac{L}{E}\right) \end{bmatrix}$$
Oscillation amplitude amplitude arge mass splitting Δm_{32}^2

$$P_{\overline{\nu}e \to \overline{\nu}e}^{3x3} = 1 - \cos^4 \theta_{13} \sin^2(2\theta_{12}) \sin^2\left(\frac{\Delta m_{21}^2 L}{4\hbar c} \frac{L}{E}\right)$$

$$P_{\overline{\nu}e \to \overline{\nu}e}^{3x3} = 1 - \cos^4 \theta_{13} \sin^2(2\theta_{12}) \sin^2\left(\frac{\Delta m_{21}^2 L}{4\hbar c} \frac{L}{E}\right)$$

$$-\sin^2(2\theta_{13}) \sin^2\left(\frac{\Delta m_{ee}^2 L}{4\hbar c} \frac{L}{E}\right)$$

$$m_2^2 = \frac{-2^{2/3}}{-2^{1/3}} \Delta m_{21}^2$$

R. Leitner CIPANP 2022

New Daya Bay results 2022

30.08.2022

9

Importance of precise measurement of θ 13 $sin^2 2\theta_{13} = 0.0853^{+0.0024}_{-0.0024}$ Daya Bay nGd RENO nGd

1. We know precisely the electron neutrino content in the m_3 mass eigenstate. $|U_{e3}|^2 \equiv \sin^2 \theta_{13} = (2.18 \pm 0.06)\%$

2. θ_{13} is also measured via an appearance of electron (anti)neutrinos in accelerator muon (anti)neutrino beams. Measured appearance probability in these experiments

$$P^{3x3}_{\overline{\nu}\mu \to \overline{\nu}e}(\theta_{13}, \delta, \text{ NO/IO}, \ \theta_{23} \leq 45^o)$$

is the function of θ_{13} but also of yet unknown CP violating phase δ , neutrino mass ordering and the octant of θ_{23} .

Input of the value of θ_{13} from reactor neutrino experiments will shed light on yet unknown variables of neutrino mixing.

3. The effect of CP violation in neutrino oscillations is proportional to $\cos(\theta_{13})\sin(2\theta_{13})$ The CP violation can be directly measured as the difference:

$$P_{\overline{\nu}\mu\to\overline{\nu}e} - P_{\nu\mu\to\nu e}$$

$$= \sin(\delta) 2\cos(\theta_{13})\sin(2\theta_{13})\sin(2\theta_{12})\sin(2\theta_{23})\sin\left(\frac{\Delta m_{21}^2}{4\hbar c}\frac{L}{E}\right)\sin\left(\frac{\Delta m_{31}^2}{4\hbar c}\frac{L}{E}\right)\sin\left(\frac{\Delta m_{32}^2}{4\hbar c}\frac{L}{E}\right)$$

$$= \sin(\delta) \qquad 0.53 \qquad 0.052(1st\ maximum) \qquad 0.156(2nd\ maximum)$$

The very precise measurement of θ_{13} means that the relative contribution of θ_{13} to the uncertainty of the 0.53 value is similar to that of much larger mixing angles θ_{12} and θ_{23} .

Precise measurement of Δm_{32}^2

Daya Bay measures the Δm_{32}^2 value most precisely with similar uncertainties to NOvA, T2K and MINOS.

The uncertainty 5.7 × 10⁻⁵ eV² is even 25% smaller than the smallest neutrino mass difference $\Delta m_{21}^2 = 7.53 \times 10^{-5} \text{ eV}^2$

Reactor antineutrino flux

Daya Bay measures the absolute flux of reactor anti-neutrinos very precisely. The Huber-Mueller (HM) model predicted a value about 5% greater. Measurements made it possible to separate the antineutrino flux from ^{235}U and ^{239}Pu separately. The result showed that for ^{239}Pu the model predicts a value about 1% larger, but for ^{235}U it predicts a value about 8% larger. However, measurement uncertainties could not rule out this model for ^{235}U .

 σ_{235} [10⁻⁴³ cm² / fission]

The new result is a combination of the **Daya Bay** $(^{235}U$ and ^{239}Pu) and **PROSPECT** $(^{235}U$) experiments. These results show good agreement of the HM model with the ^{239}Pu data but **significantly disfavor the model for** ^{235}U .

Light sterile neutrino searches

Fourth neutrino mass eigenstate m_4 imply three additional mixing angles θ_{14} , θ_{24} and θ_{34} , two additional CP violating Dirac phases.

Electron antineutrino disappearance depends only on the value of θ_{14} Excluded region is on right part of the plot

Similarly, the search for sterile neutrinos in muon neutrino experiments sets a limit in the $\Delta m_{41}^2 U_{\mu 4}^2$ plane.

By combining the electron and muon neutrino disappearance data, a limit can be placed on the Δm_{41}^2 .vs. product $U_{e4}^2 U_{\mu 4}^2$

Observations of the oscillations of muon neutrinos to electron neutrinos, which cannot be described by the three types of neutrinos, are proportional to this product $U_{e4}^2 U_{\mu4}^2$

Combined results of electron (Daya Bay, Bugey-3) and muon (MINOS, MINOS+) excluded the LSND and MiniBooNE allowed regions for $\Delta m_{41}^2 < 1.2 \text{ eV}^2$.

Summary

The Daya Bay experiment

- Has acquired the largest sample of reactor antineutrinos to date.
- Obtains the world's most precise determination of $sin^2 2\theta_{13}$
- Provides one of the best measurements of $|\Delta m^2_{32}|$ with the uncertainty smaller than Δm^2_{21}
- Yields leading results on absolute reactor neutrino flux and light sterile neutrino searches
 - Will have more results to be presented in the future, for example updated results on oscillation parameters with nH samples.