

Potential of A TeV Muon-Ion Collider at BNL

- The ultimate QCD frontier and a path toward a new energy frontier

Based on

- Nucl. Instrum. Meth. A 1027 (2022) 166334
- arXiv:2203.06258, a whitepaper submitted to Snowmass 2021

D. Acosta, <u>Wei Li</u>, O. Miguel Colin, X. Zuo (Rice U.) E. Barberis, N. Hurley, D. Wood (Northeastern U.)

14th Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2022)

Science for EIC Developed Over Past Two Decades

Science for EIC Developed Over Past Two Decades

What's after EIC?

Time to think if we want a future beyond the EIC

Tacility: an Electron Ion Collider.." program of the next decade.

hi

in te

The Electron-Ion Collider (EIC) at BNL

BNL (US): RHIC \rightarrow EIC e \uparrow (18)+p \uparrow (275) GeV

Salient points:

- Electron beam energy up to 18 GeV
- Hadron beam energy up to 275 GeV
- $\sqrt{s} = 20 140 \text{ GeV}$
- Luminosity 10³³ 10³⁴ Hz/cm²
- Polarized electron, proton and ion beams (any)

The Electron-Ion Collider (EIC) at BNL

BNL (US): RHIC \rightarrow EIC e \uparrow (18)+p \uparrow (275) GeV

Salient points:

- Electron beam energy up to 18 GeV
- Hadron beam energy up to 275 GeV
- $\sqrt{s} = 20 140 \text{ GeV}$
- Luminosity 10³³ 10³⁴ Hz/cm²
- Polarized electron, proton and ion beams (any)
- But what if we changed leptons? µ!?
- µ's do not radiate when bent
 → much easier acceler'n in rings
- Unfortunately, µ's do not live long

••

Muon Colliders

Early mentions of MC date back to 1960s and early designs in 1990s

Muon Accelerator Program (MAP, 2011-2016) for feasibility studies

Reviving interests in muon colliders in HEP community recently:

- Formation of <u>International Muon Collider Collaboration (IMCC)</u> by CERN in 2021: consider 10+ TeV μ⁺μ⁻ with 3 TeV as an initial step
- Muon Collider forum in US from Snowmass 21 (white papers)

IMCC Timeline (technically limited)

20+ years till the first MC with sustained R&D efforts

A small-scale **demonstrator** with strong science desired before going to O(10+) TeV

A Muon-Ion Collider at BNL

Acosta, Li, NIM A 1027 (2022) 166334

 \rightarrow Re-use EIC facility by replacing e by μ beam

Bending radius of RHIC tunnel: **r = 290m** Achievable muon beam energy: **0.3Br**

Cost effective and affordable!

Parameter	1 (aggressive)	2 (realistic)	3 (conservative)
Muon energy (TeV)	1.39	0.96	0.73
Muon bending magnets (T)	16 (FCC)	11 (HL-LHC)	8.4 (LHC)
Muon bending radius (m)		290	
Proton (Au) energy (TeV)	().275 (0.11/nucleor)
CoM energy (TeV)	1.24 (0.78)	1.03 (0.65)	0.9 (0.57)

 \sqrt{s} ~ 1TeV, 7-8x increase over EIC

Design Parameters – MulC

Parameter		Μι	I C (BNL)		
$\sqrt{s_{\mu p}}$ (TeV)	0.33	0.74	1.0	+	$\sqrt{S} \qquad \qquad \mathcal{L}_{\mu p} = \frac{N^{\mu} N^{p}}{1 + \frac{N^{\mu} N^{p}}{2} + \frac{N^{\mu} N^{p}}{2} \min[f_{c}^{\mu}, f_{c}^{p}] H_{ha},$
L _{µp} (10 ³³ cm ⁻² s ⁻¹)	0.07	2.1	4.7	+	Peak lumi. $4\pi \max[\sigma_x^{\mu}, \sigma_x^{\nu}] \max[\sigma_y^{\mu}, \sigma_y^{\nu}]$
<i>Int. Lumi.</i> (fb ⁻¹) per 10 yrs	6	178	400		$\sigma_{x,y}^{\mu,p} = \sqrt{\varepsilon_{x,y}^{\star}\beta_{x,y}^{\star}m^{\mu,p}/E^{\mu,p}}$
Staging	options	Muon		Proton	
Beam energy (TeV)	0.1	0.5	0.96	0.275 🗲	- Beam energy
N _b (10 ¹¹)	40	20	20	3	
f ^μ _{rep} (Hz)	15	15	15		Linique chellenges for MulC
Cycles per μ bunch, Ν ^μ _{cycle}	1134	1719	3300		 IP design
ε [*] _{x,y} (μm)	200	25	25	0.3	Machine-Detector Interface
β* _{x,y} @IP (cm)	1.7	1	0.75	5	 Neutrino radiation mitigation
Trans. beam size, σ _{x.v} (μm)	48	7.6	4.7	7.1	

Muon Collider parameters (<u>arXiv:1901.06150</u>) + BNL/EIC proton beam parameters (<u>CDR</u>)

9

Design Parameters – MulC and LHmuC

Parameter	MuIC (BNL)			LH	muC (CERN)	
$\sqrt{s_{\mu p}}$ (TeV)	0.33	0.74	1.0		6	5.5
L _{µp} (10 ³³ cm ⁻² s ⁻¹)	0.07	2.1	4.7		2	2.8
<i>Int. Lumi.</i> (fb ⁻¹) per 10 yrs	6	178	400		2	37
Staging	options	Muon		Proton	Muon	Proton
Beam energy (TeV)	0.1	0.5	0.96	0.275	1.5	7
N _b (10 ¹¹)	40	20	20	3	20	2.2
f ^μ _{rep} (Hz)	15	15	15		12	
Cycles per μ bunch, Ν ^μ _{cycle}	1134	1719	3300		3300	
ε [*] _{x,y} (μm)	200	25	25	0.3	25	2.5
β* _{x,y} @IP (cm)	1.7	1	0.75	5	0.5	15
Trans. beam size, σ _{x,y} (μm)	48	7.6	4.7	7.1	3	7.1

Similar idea applies to LHC

arXiv:2203.06258

Higher \sqrt{s} than FCC-eh! (3.5 TeV)

Muon Collider parameters (arXiv:1901.06150)

+ BNL/EIC proton beam parameters (CDR)

Science Potential and Synergy at the MulC

Probes a **new energy scale** and **Bjorken-x** in DIS using a relatively compact machine

- √s ~ 1 TeV
- Q² up to 10⁶ GeV²
- well beyond EIC
- x as low as 10⁻⁶

Provides a science case for a TeV muon storage ring demonstrator toward a multi-TeV μ + μ - collider

Facilitate the collaboration of the NP and HEP communities around an innovative and forward-looking machine

Re-use existing facilities at BNL (MuIC as an upgrade to the EIC)

DIS Evolution and Physics Landscape

DIS Evolution and Physics Landscape

Nuclear Physics at the MulC

Building on the EIC science foundation!

Particle Physics at the MulC

Electroweak:

Higgs physics:

Uncertainties of Higgs couplings

LHeC/MuIC outperforms HL-LHC for certain Higgs decay channels

A lab for QCD and Nuclei at the MulC

MuIC will bring us well into the nonlinear regime and unambiguously discover saturation at $x \sim 10^{-5}$

Saturation scale in nuclei

Final-state kinematics at MulC

Muons very forward: -7<η<-1

Jets/hadrons fairly central: -4<η<2

Detector challenges and R&D needs

Unique challenges:

- Asymmetric beam-induced background (BIB)
- Detection of far-backward scattered muons
- Hadron PID at high p over wide coverage

	Main requirements
Muons	-7<η<-1, σ(p)/p < 5%
Tracking	-4<η<2.4
PID (π/k/p)	-4<η<2.4, p<100 GeV
Calorimetry (jets, photons)	-5<ŋ<2.4

Detailed simulations in progress (leveraging EIC Detector R&Ds)

A Roadmap (in our view)

Summary

A Muon-Ion (proton) Collider:

- Compelling sciences with synergies across NP, HEP energy and intensity (e.g., nuSTORM) frontiers
- Provides a clear target to establish MC R&D program and serves as a demonstrator toward the ultimate 10+ TeV μ + μ -
- Affordable (e.g., an "upgrade" to the EIC) by re-using the existing facility, infrastructure, accelerator expertise, potentially with funding resources from both HEP and NP

MuIC is an opportunity to realize the first muon-based collider!

Extras

The key concept is to **re-use an existing hadron collider facility** and add one muon beam – μp and μA .

The motivation is two-fold:

- establish a unique science program in HEP and Nuclear Physics
- serves as a demonstrator to support MC R&Ds and a stepping stone toward the ultimate O(10+) TeV μ + μ collider

Affordable: one muon beam and leverage resources from HEP and NP to realize a (the first?) muon-based collider in US in 20-25 years!

R&D challenges of muon colliders

Required key accelerator technologies

- High power proton driver development
 - 2ns, 8 GeV bunches up to 4 MW with a 15 Hz rep. rate
- Target system capable of managing large instant power
 - 20 T capture solenoid with large bore that can withstand radiation
- Cooling system to reduce 6D emittance by 6 orders of magnitude
 - Demand for high B-fields @ 30-40 T range
 - Placement of NC RF cavities within multi-T B-fields
- Acceleration scheme towards TeV scale energy before decay
 - Fast ramping magnets to deliver ramp times of several T on a ms timescale
- Collider ring
 - 12-16 T dipole magnets with a 150 mm aperture
 - Neutrino flux mitigation system

Diktys Stratakis Snowmass Summer Meeting 19 July 2022

Neutrino-induced radiation background

RHIC-BNL tunnel is essentially **on the surface**, in a "remote island"

Tilt the disk plane at a small angle to direct straight sectors toward land/sea and sky?

LHmuC at CERN

Stage 1: assuming a 3 TeV $\mu^+\mu^-$ is designed by IMCC and built at CERN, a μ -p/A mode can be operated concurrently with the LHC.

May be even easier to start in μ-p/A mode with one muon beam?

Stage 2: Once O(10+) TeV $\mu^+\mu^-$ design is mature, it can be hosted in the LHC tunnel.

Stage 3: if a large tunnel is built in farther future, a O(100) TeV $\mu^+\mu^-$ may be realized

Science potential at the MulC/LHmuC

New physics potential: μ -p vs μ + μ -

- * 3 TeV $\mu^+\mu^-$ (IMCC) ~ 4.5 TeV μ^-p ~ 15 TeV pp
- 6.5 TeV μ -p (LHmuC) ~ 4.3 TeV μ + μ ~ 22 TeV pp
- 1 TeV μ⁻p (MuIC) ~ 0.67 TeV μ⁺μ⁻ ~ 3.3 TeV pp (without considering different bkgs levels)

The muon smasher's guide

(reproduced in our calculations) ²⁶

