LHC is "Staying on target"

Recent CMS results on Higgs physics

CIPANP August 30, 2022

Philip Chang University of Florida

Higgs physics is broad and I cannot cover all!

http://cms-results.web.cern.ch/cms-results/ public-results/publications/HIG/index.html

169	<u>HIG-19-016</u>	Measurement of the Higgs boson inclusive and differential fiducial production cross sections in the diphoton decay channel with pp collisions at $\sqrt{s}=$ 13 TeV	Submitted to JHEP	25 August 2022
168	<u>HIG-21-001</u>	Searches for additional Higgs bosons and for vector leptoquarks in $ au au$ final states in proton-proton collisions at $\sqrt{s}=$ 13 TeV	Submitted to JHEP	4 August 2022
167	HIG-21-006	Search for CP violation in ttH and tH production in multilepton channels in proton-proton collisions at \sqrt{s} = 13 TeV	Submitted to JHEP	4 August 2022
166	HIG-21-003	Search for the exotic decay of the Higgs boson into two light pseudoscalars with four photons in the final state in proton-proton collisions at $\sqrt{s}=$ 13 TeV	Submitted to JHEP	2 August 2022
165	<u>HIG-21-015</u>	Search for the Higgs boson decay to a pair of electrons in proton-proton collisions at $\sqrt{s}=$ 13 TeV	Submitted to PLB	30 July 2022
164	<u>HIG-21-010</u>	Search for a charged Higgs boson decaying into a heavy neutral Higgs boson and a W boson in proton-proton collisions at \sqrt{s} = 13 TeV	Submitted to JHEP	4 July 2022
163	HIG-22-001	A portrait of the Higgs boson by the CMS experiment ten years after the discovery	Nature 607 (2022) 60	4 July 2022
162	<u>HIG-20-004</u>	Search for nonresonant Higgs boson pair production in the four leptons plus two b jets final state in proton-proton collisions at \sqrt{s} = 13 TeV	Submitted to JHEP	22 June 2022
161	HIG-21-002	Search for Higgs boson pairs decaying to WWWW, WW $_{ au au}$, and $_{ au au au au}$ in proton-proton collisions at $\sqrt{s}=$ 13 TeV	Submitted to JHEP	21 June 2022
160	<u>HIG-20-013</u>	Measurements of the Higgs boson production cross section and couplings in the WW boson pair decay channel in proton-proton collisions at \sqrt{s} = 13 TeV	Submitted to EPJC	20 June 2022
159	<u>HIG-20-010</u>	Search for nonresonant Higgs boson pair production in final state with two bottom quarks and two tau leptons in proton-proton collisions at $\sqrt{s}=$ 13 TeV	Submitted to PLB	19 June 2022
158	HIG-20-008	Search for Higgs boson decays into Z and J/ ψ and for Higgs and Z boson decays into J/ ψ or Υ pairs in pp collisions at $\sqrt{s}=$ 13 TeV	Submitted to PLB	7 June 2022
157	HIG-21-008	Search for Higgs boson decay to a charm quark-antiquark pair in proton-proton collisions at $\sqrt{s}=$ 13 TeV	Accepted by PRL	11 May 2022
156	HIG-20-007	Constraints on anomalous Higgs boson couplings to vector bosons and fermions from the production of Higgs bosons using the $ au au$ final state	Accepted by PRD	10 May 2022
155	HIG-20-018	Search for light Higgs bosons from supersymmetric cascade decays in pp collisions at \sqrt{s} = 13 TeV	Accepted by EPJC	28 April 2022
154	<u>HIG-19-014</u>	Search for Higgs boson decays to a Z boson and a photon in proton-proton collisions at $\sqrt{s}=$ 13 TeV	Accepted by JHEP	27 April 2022
153	<u>HIG-19-010</u>	Measurements of Higgs boson production in the decay channel with a pair of $ au$ leptons in proton-proton collisions at $\sqrt{s}=$ 13 TeV	Submitted to EPJC	27 April 2022
152	HIG-20-005	Search for Higgs boson pair production in the four b quark final state in proton-proton collisions at \sqrt{s} = 13 TeV	PRL 129 (2022) 081802	19 February 2022
151	HIG-21-013	First evidence for off-shell production of the Higgs boson and measurement of its width	Submitted to NP	14 February 2022
150	HIG-20-003	Search for invisible decays of the Higgs boson produced via vector boson fusion in proton-proton collisions at $\sqrt{s}=$ 13 TeV	PRD 105 (2022) 092007	27 January 2022

Just this year alone starting January, CMS produced 20 papers!

Higgs Physics

Higgs production / decay

Higgs properties

Looking for unexpected Higgs behaviors

Future

Nature 607 (2022) 60

Coupling

strength

Nature 607 (2022) 60

**makes the width very small

Years	Runs	Energy	Luminosity	# of Higgs
2011	Run 1	7 TeV	~5 fb ⁻¹	~100 K
2012	Run 1	8 TeV	~6 fb ⁻¹	~200 K

Years	Runs	Energy	Luminosity	# of Higgs
2011	Run 1	7 TeV	~5 fb ⁻¹	~100 K
2012	Run 1	8 TeV	~6 fb ⁻¹	~200 K

Years	Runs	Energy	Luminosity	# of Higgs
2011	Run 1	7 TeV	~5 fb ⁻¹	~100 K
2012	Run 1	8 TeV	~6 fb ⁻¹	~200 K

The New York Times

Physicists Find Elusive Particle Seen as Key to Universe

🖓 122

7 TeV 8 TeV

~0.1 M Higgs

2011

12

Years	Runs	Energy	Luminosity	# of Higgs
2011	Run 1	7 TeV	~5 fb ⁻¹	~100 K
2012	Run 1	8 TeV	~20 fb ⁻¹	~500 K

Years	Runs	Energy	Luminosity	# of Higgs
2011	Run 1	7 TeV	~5 fb ⁻¹	~100 K
2012	Run 1	8 TeV	~20 fb ⁻¹	~500 K

Years	Runs	Energy	Luminosity	# of Higgs
2011	Run 1	7 TeV	~5 fb ⁻¹	~100 K
2012	Run 1	8 TeV	~20 fb ⁻¹	~500 K

Years	Runs	Energy	Luminosity	# of Higgs
2011	Run 1	7 TeV	~5 fb ⁻¹	~100 K
2012	Run 1	8 TeV	~20 fb ⁻¹	~500 K

Years	Runs	Energy	Luminosity	# of Higgs
2011	Run 1	7 TeV	~5 fb ⁻¹	~100 K
2012	Run 1	8 TeV	~20 fb ⁻¹	~500 K

Years	Runs	Energy	Luminosity	# of Higgs
2011	Run 1	7 TeV	~5 fb ⁻¹	~100 K
2012	Run 1	8 TeV	~20 fb ⁻¹	~500 K

Years	Runs	Energy	Luminosity	# of Higgs
2011	Run 1	7 TeV	~5 fb ⁻¹	~100 K
2012	Run 1	8 TeV	~20 fb ⁻¹	~500 K

~0.1

7

"Portrait" of the Higgs boson

"Portrait" of the Higgs boson

"Portrait" of the Higgs boson

UF Chang Florida

"Portrait" of the Higgs boson

UF Chang Florida

"Portrait" of the Higgs boson

Number of Higgs boson produced

Years	Runs	Energy	Luminosity	# of Higgs
2011	Run 1	7 TeV	~5 fb ⁻¹	~100 K
2012	Run 1	8 TeV	~20 fb ⁻¹	~500 K

Number of Higgs boson produced

Cha	na
	ida

Years	Runs	Energy	Luminosity	# of Higgs
2011	Run 1	7 TeV	~5 fb ⁻¹	~100 K
2012	Run 1	8 TeV	~20 fb ⁻¹	~500 K
2015 - 2018	Run 2	13 TeV	~140 fb ⁻¹	~8 M

~8 M Higgs

2018

An order of magnitude larger dataset is available!

Number of Higgs boson produced

U Chang				
Chang				
	C	ha	n	6

Years	Runs	Energy	Luminosity	# of Higgs
2011	Run 1	7 TeV	~5 fb ⁻¹	~100 K
2012	Run 1	8 TeV	~20 fb ⁻¹	~500 K
2015 - 2018	Run 2	13 TeV	~140 fb ⁻¹	~8 M

Nature 607 (2022) 60

Nature 607 (2022) 60

19

Nature 607 (2022) 60

10 year anniversary of discovery of Higgs boson Chang 1996 Hubble

Higç

Higg

Higc

Mass of Higgs boson

M_H = 125.38 ± 0.14 (± 0.11 stat ± 0.08 syst) GeV

22

precision

Nature 607 (2022) 60

138 fb⁻¹ (13 TeV)

♦ Data —Signal

±1 SD

B uncertainty

¹⁷⁰ π_{γγ} (GeV)

30

31

Width of Higgs boson

In SM, width of Higgs boson is small = 4.1 MeV

Even if a small coupling to the Higgs can change the width drastically

 \Rightarrow It is important to check the width and possibility of any additional branching ratio

Width of Higgs boson

Width of Higgs boson

$$\Gamma_{\rm H} = 3.2^{+2.4}_{-1.7} \, {\rm MeV}$$

First evidence for Higgs off-shell production with 3.60 significance and probed Higgs width

 $BR(H \rightarrow invisible) \le 18\%$

Additional Non-SM Branching Ratio (visible)

Chang

This is like asking whether the newly found planet is a circle

~10%

~15%

~20%

~40%

How do these couplings really look like?

Chang

Chang

In SM, following are ~zero

In SM, following is ~zero $iH\bar{\psi}\chi_5\psi$

In SM, following are ~zero

 $-0\tau_{h}$

Table 4: Input features for the three BDTs. A check mark (\checkmark) indicates the variable is used in a given final state, whereas a long dash (—) indicates the variable is not used in that final state.

Variable description	$2\ell SS + 0\tau_h$	$2\ell SS + 1\tau_h$	$3\ell + 0$
<i>p</i> _T of jet 1	—	_	\checkmark
$p_{\rm T}$ of jet 2	_	_	\checkmark
$p_{\rm T}$ of lepton 1	\checkmark	\checkmark	\checkmark
$p_{\rm T}$ of lepton 2	\checkmark	\checkmark	\checkmark
$p_{\rm T}$ of lepton 3	_	_	\checkmark
$p_{\rm T}$ of τ lepton	_	\checkmark	
η of lepton 1	\checkmark	\checkmark	_
η of lepton 2	\checkmark	\checkmark	_
η of τ lepton	_	\checkmark	
ϕ of lepton 1	\checkmark	\checkmark	_
ø of lepton 2	\checkmark	\checkmark	_
ϕ of τ lepton		1	_
$m_{\rm T}(l_1, p_{\rm T}^{\rm miss}) + p_{\rm T}^{\rm miss}$	1		
$m_{\rm T}(l_2, \eta_{\rm miss}^{\rm miss}) + \eta_{\rm m}^{\rm miss}$ system	1	_	_
AR of lepton 1 to its closest iet		1	1
ΔR of lepton 2 to its closest jet	1	·	
Invariant mass of the reconstructed $t\bar{t}H$ system $(M_{-} - \sum_{i} n^{\text{lep}_{i}} + n^{\text{miss}} + \sum_{i} n^{\text{jet}_{i}*})$.(•	
Invariant mass of the reconstructed till system ($vi_{ttH} - \sum_{i} p^{-1} + p_{T}^{-1} + \sum_{i \le k} p^{i-1}$)	•	v	•
$\Delta \eta$ of two jets with highest b score in the laboratory frame ($\Delta \eta_{BB}$)	•	v	v
$\Delta \eta$ of two leptons in frame of two most-likely b jets	~	v	
$\Delta \eta$ of two jets with highest b score in the dilepton system frame	v	v	_
$\Delta \eta$ of two jets with highest b score in the ℓ_1 - ℓ_2 system frame	_	_	•
$\Delta \eta$ of two jets with nignest b score in the ℓ_1 - ℓ_3 system frame	_	_	~
$\Delta \phi$ of the two leptons in frame of two most-likely b jets	_	V	_
$\Delta \phi$ of two jets with highest b score in the dilepton system frame		V	_
Average ΔR among all jets	V	v	_
Jet multiplicity	√	√	
$p_{\rm T}^{\rm muss}$	\checkmark	\checkmark	_
Azimuthal angle of $\vec{p}_{\rm T}^{\rm miss}$	\checkmark	\checkmark	_
Highest BDT score of jet triplet from t	\checkmark	\checkmark	—
Higgs jet tagger	_	\checkmark	—
Angle of tt and H boson in ttH-system	_	\checkmark	_
Angle between two t in tt-frame	_	\checkmark	_
$\Delta R_{l_3-l_1} = \sqrt{(\eta_{\ell_3}-\eta_{\ell_1})^2 + (oldsymbol{\phi}_{\ell_3}-oldsymbol{\phi}_{\ell_1})^2}$	_	—	\checkmark
$\Delta R_{l_1-l_2} = \sqrt{(\eta_{\ell_1}-\eta_{\ell_2})^2 + (\phi_{\ell_1}-\phi_{\ell_2})^2}$	_	—	\checkmark
$\Delta R_{l_2-l_3} = \sqrt{(\eta_{\ell_2}-\eta_{\ell_3})^2 + (oldsymbol{\phi}_{\ell_2}-oldsymbol{\phi}_{\ell_3})^2}$	_	—	\checkmark
$\eta_{ m jet1} - \eta_{ m jet2}$	—	—	\checkmark
$p_{\mathrm{T}}^{\mathrm{jet1}}+p_{\mathrm{T}}^{\mathrm{jet2}}+p_{\mathrm{T}}^{\mathrm{jet3}}+p_{\mathrm{T}}^{\mathrm{miss}}$	—	—	\checkmark
Total number of variables	19	25	16
* k = 6 (4) in the $2\ell SS + 0\tau_h (2\ell SS + 1\tau_h \text{ and } 3\ell + 0\tau_h)$) final state		

13 TeV

–Pure CP-even

CMS Simulation

Trained machine learning using multiple input variables to discriminate CP-odd vs. CP-even

Taking a deep dive

Taking a deep dive

CMS-HIG-19-016

Further dissecting and comparing with expectations

Cł	าล	n	Q
FI	ori	d	a

Years	Runs	Energy	Luminosity	# of Higgs
2011	Run 1	7 TeV	~5 fb ⁻¹	~100 K
2012	Run 1	8 TeV	~20 fb ⁻¹	~500 K
2015 - 2018	Run 2	13 TeV	~140 fb ⁻¹	~8 M

~8 M Higgs

2018

An order of magnitude larger dataset is available!

b-	
	ly la

Years	Runs	Energy	Luminosity	# of Higgs
2011	Run 1	7 TeV	~5 fb ⁻¹	~100 K
2012	Run 1	8 TeV	~20 fb ⁻¹	~500 K
2015 - 2018	Run 2	13 TeV	~140 fb ⁻¹	~8 M

Years	Runs	Energy	Luminosity	# of Higgs
2011	Run 1	7 TeV	~5 fb ⁻¹	~100 K
2012	Run 1	8 TeV	~20 fb ⁻¹	~500 K
2015 - 2018	Run 2	13 TeV	~140 fb ⁻¹	~8 M
2022 - 2025	Run 3	13.6 TeV	~300 fb ⁻¹	~16 M

~16 M Higgs

2025

U Chang	U Chang				
Chang	Chang				
Chang	Chang				
Chang	Chang				_
		L	ĥē	n	e

Years	Runs	Energy	Luminosity	# of Higgs
2011	Run 1	7 TeV	~5 fb ⁻¹	~100 K
2012	Run 1	8 TeV	~20 fb ⁻¹	~500 K
2015 - 2018	Run 2	13 TeV	~140 fb ⁻¹	~8 M
2022 - 2025	Run 3	13.6 TeV	~300 fb ⁻¹	~16 M

Chang				
	C	ha	n	q

Years	Runs	Energy	Luminosity	# of Higgs
2011	Run 1	7 TeV	~5 fb ⁻¹	~100 K
2012	Run 1	8 TeV	~20 fb ⁻¹	~500 K
2015 - 2018	Run 2	13 TeV	~140 fb ⁻¹	~8 M
2022 - 2025	Run 3	13.6 TeV	~300 fb ⁻¹	~16 M
2029 - 2042	HL-LHC	14 TeV	~3000 fb ⁻¹	~200 M

~200 M Higgs

2042

U		
Ch	a	ng
Flo	ori	da

Years	Runs	Energy	Luminosity	# of Higgs
2011	Run 1	7 TeV	~5 fb ⁻¹	~100 K
2012	Run 1	8 TeV	~20 fb ⁻¹	~500 K
2015 - 2018	Run 2	13 TeV	~140 fb ⁻¹	~8 M
2022 - 2025	Run 3	13.6 TeV	~300 fb ⁻¹	~16 M
2029 - 2042	HL-LHC	14 TeV	~3000 fb ⁻¹	~200 M

~200 M Higgs

Number of Higgs boson produced 1996 Hubble

~200 M Higgs

Chang Florida

Number of Higgs boson produced 2003 Hubble

~200 M Higgs

Chang Florida

More Higgs couplings

These couplings require at least two Higgs in the process to probe

, Η bb, ZZ, WW, γγ, ττ, ...

H ----

Nature 607 (2022) 60

H bb, ZZ, WW, γγ, ττ, ...

UF Chang Florida Nature 607 (2022) 60

~40% constraint

Large gap to cover to observe SM

V

Η

New ways are also being investigated

Summary

- Since the discovery Higgs boson has been studied in detail
- Mass, Width, Couplings, CP, and differential
- Pushing new frontier via searching for new processes
- involving the Higgs boson
- In the future we will have a much more precise portrait of
- the Higgs

Energy Frontier Highlight

The Energy Frontier vision in a nutshell

Part of it is what we talked about today

It is essential to

Complete the <u>HL-LHC program</u>,

Higgs factory allows much

"sharper" portrait picture of Higgs

- Start now a targeted program for <u>detector R&D for Higgs Factories</u>
- Support a fast start of the construction of a Higgs factory
- Ensure the long-term viability of the field by <u>developing a multi-TeV energy</u> <u>frontier facility</u> such as a *muon collider* or a *hadron collider*.

Support to AF, CEF, CompF, IF, and TF is crucial to the realization of the EF vision

Energy Frontier Highlight 2003 Hubble

The E

It is essentia

- Complete
- Start now
- Support a
- Ensure the frontier factor
- Support to AF

Higgs

h

Chang Florida

<u>energy</u>

EF vision

Energy Frontier Highlight 2015 New Horizon

It is essentia

- Complete
- Start now
- Support a
- Ensure the frontier factors

Support to AF

Higgs

h

Chang Florida

<u>energy</u>

EF vision