

Aug, 2022

BEASTS OF THE JURA WILD Consistent interpretation of the Pentaquark States in Λ_b decays

Tim Burns

T.J. Burns and E.S. Swanson, Experimental Constraints on the Properties of P_c States, 2112.11527

T.J. Burns and E.S. Swanson, Production of P_c States in Λ_b Decays, 2207.00511

Experimental Constraints

LHCb Discovery

 $\Lambda_b^0 \to J/\psi p K^-$

A Look at the Data (LHCb cos weighted)

A Look at the Data (LHCb cos weighted)

A Look at the Data (LHCb cos weighted)

A Look at the Data (JLab)

Hiller Blin et al. arXiv:1606.08912 Ali et al, arXiv:1905.10811
$$\begin{split} Bf(Pc(4312) &\to J/\psi p) < 4.6 \% \, (90 \% \, C \, . \, L.) \\ Bf(Pc(4440) &\to J/\psi p) < 2.3 \% \, (90 \% \, C \, . \, L.) \\ Bf(Pc(4457) &\to J/\psi p) < 3.8 \% \, (90 \% \, C \, . \, L.) \end{split}$$

A Look at the Data (JLab J ψ -007)

Sylvester Joosten, GHP21 J/ ψ -007

4% scale uncertainty on cross section limit

RESULTS AND IMPLICATIONS Cross-section at the resonance peak for model-independent upper limits

Upper limit for *P_c* cross section almost order of magnitude below GlueX limit.

Results are inconsistent with reasonable assumptions for true 5-quark states.

Door is still open for molecular states, but will be very hard to measure in photoproduction due to small overlap with both γp initial state and J/ ψp final state

20

A Look at the Data (AD modes)

Amplitude analysis of $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+}\overline{D}^{0}K^{-}$ decays and pentaquark searches in the $\Lambda_{c}^{+}\overline{D}^{0}$ system at the LHCb experiment

Alessio Piucci

Heidelberg University, Germany

First observation of the decay $\Lambda_b^0 \to \Lambda_c^+ \bar{D}^{(*)0} K^-$ in preparation of a pentaquark search in the $\Lambda_c^+ \bar{D}^{(*)0}$ system at the LHCb experiment

Marian Stahl (Heidelberg U.) Jul 11, 2018

139 pages Supervisors: Stephanie Hansmann-Menzemer (Heidelberg U.), Klaus Reygers (Heidelberg U.) Thesis: PhD U. Heidelberg (main) (defense: Jul 11, 2018) DOI: 10.11588/heidok.00025126 Report number: CERN-THESIS-2018-176 Experiments: CERN-LHC-LHCb View in: CERN Document Server

http://cds.cern.ch/record/2640677

https://cds.cern.ch/record/2712057/files/10.11588_heidok.00027350.pdf

A Look at the Data (AD modes)

Piucci reports Pc fit fraction upper limits in $\Lambda_b \rightarrow \Lambda_c DK$

$$P_{c}(4312)^{+} \text{ fit fraction} < 0.004 (95\% \text{CL})$$

$$P_{c}(4440)^{+}, J^{P} = \frac{1}{2}^{-} \text{ fit fraction} < 0.006 (95\% \text{CL})$$

$$P_{c}(4440)^{+}, J^{P} = \frac{3}{2}^{-} \text{ fit fraction} < 0.0045 (95\% \text{CL})$$

$$P_{c}(4457)^{+}, J^{P} = \frac{1}{2}^{-} \text{ fit fraction} < 0.0045 (95\% \text{CL})$$

$$P_{c}(4457)^{+}, J^{P} = \frac{3}{2}^{-} \text{ fit fraction} < 0.008 (95\% \text{CL})$$

A Look at the Data (AD modes)

Combine with measurements of

$$\mathcal{R} \equiv \mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi \, p) / \mathcal{B}(\Lambda_b^0 \to J/\psi \, pK^-)$$

and branching fractions

$$Bf(\Lambda_b \to J/\psi pK) = 3.2(5) \cdot 10^{-4}$$
$$Bf(\Lambda_b \to D\Lambda_c K) = 1.5 \cdot 10^{-3}$$

to obtain upper limits

$$Bf(P_c \to \Lambda_c D) \lesssim \begin{cases} 6.3, (4312) \\ 2.5, (4440; 1/2^{-}) \\ 1.9, (4440; 3/2^{-}) & Bf(P_c \to J/\psi p) \\ 4.0, (4457; 1/2^{-}) \\ 7.1, (4457; 3/2^{-}) \end{cases}$$

A Previous Model

A Recent Molecular Model

Du et al., arXiv:2102.07159

(i) 3 extraneous resonances?
(ii) artificial production
(iii) restricted fit range/LD?
(iv) 4440 AD branching fraction?
(v) extreme background model:

f_{1} , $(F) = b_{2} \pm b_{3} E^{2} \pm b_{2} E^{4} \pm b_{3} E^{4}$	g_r^2
$J_{\rm bgd}(E) = 0_0 + 0_1 E + 0_2 E +$	$\overline{(m-E)^2+\Gamma^2/4},$

				solution	A		solution	В
	DC ([MeV])	RS	J^P	Pole [MeV]	$g_{ m DC}$	J^P	Pole [MeV]	$g_{ m DC}$
$P_{c}(4312)$	$\Sigma_c \bar{D}$ (4321.6)	Ι	$\frac{1}{2}^{-}$	4314(1) - 4(1)i	2.6(1) + 0.4(2)i	$\left \frac{1}{2}\right ^{-}$	4312(2) - 4(2)i	2.9(1) + 0.4(2)i
$P_{c}(4380)$	$\Sigma_{c}^{*}\bar{D}$ (4386.2)	II	$\frac{3}{2}^{-}$	4377(1) - 7(1)i	2.8(1) + 0.1(1)i	$\frac{3}{2}^{-}$	4375(2) - 6(1)i	3.0(1) + 0.1(1)i
$P_{c}(4440)$	$\Sigma_c \bar{D}^*$ (4462.1)	III	$\frac{1}{2}^{-}$	4440(1) - 9(2)i	3.7(2) + 0.6(1)i	$\frac{3}{2}^{-}$	4441(3) - 5(2)i	3.6(1) + 0.3(1)i
$P_{c}(4457)$	$\Sigma_c \bar{D}^*$ (4462.1)	III	$\frac{3}{2}^{-}$	4458(2) - 3(1)i	2.1(2) + 0.3(1)i	$\frac{1}{2}^{-}$	4462(4) - 5(3)i	2.0(2) + 1.2(3)i
P_c	$\Sigma_c^* \bar{D}^*$ (4526.7)	IV	$\frac{1}{2}^{-}$	4498(2) - 9(3)i	4.0(1) + 0.4(2)i	$\frac{1}{2}^{-}$	4526(3) - 9(2)i	1.5(2) + 1.1(4)i
P_c	$\Sigma_c^* \bar{D}^*$ (4526.7)	IV	$\frac{3}{2}^{-}$	4510(2) - 14(3)i	3.3(2) + 0.6(2)i	$\frac{3}{2}^{-}$	4521(2) - 12(3)i	2.5(2) + 0.9(2)i
P_c	$\Sigma_{c}^{*}\bar{D}^{*}$ (4526.7)	IV	$\frac{5}{2}^{-}$	4525(2) - 9(3)i	1.9(2) + 0.6(7)i	$\frac{5}{2}^{-}$	4501(3) - 6(4)i	3.9(2) + 0.1(2)i

Our Model

final state interactions

final state interactions

$1/2^{-}$	$\Lambda_c D$	$\Lambda_c ar{D}^*$	$\Sigma_c \bar{D}$	$\Sigma_c \bar{D}^*$	$\Sigma_c^* \bar{D}^*$	NJ/ψ	$N\eta_c$
$\Lambda_c ar{D}$	Α	0	0	$\sqrt{3}B$	$\sqrt{6}B$	$\frac{\sqrt{3}}{2}D$	$rac{1}{2}D$
$\Lambda_c \bar{D}^*$		Α	$\sqrt{3}B$	-2B	$\sqrt{2}B$	$-\frac{D}{2}$	$\frac{\sqrt{3}}{2}D$
$\Sigma_c ar{D}$			C_a	$\frac{2}{\sqrt{3}}C_b$	$-\sqrt{\frac{2}{3}}C_b$	$-\frac{1}{2\sqrt{3}}E$	$\frac{1}{2}E$
$\Sigma_c \bar{D}^*$				$C_a - rac{4}{3}C_b$	$-rac{\sqrt{2}}{3}C_b$	$\frac{5}{6}E$	$-\frac{1}{2\sqrt{3}}E$
$\Sigma_c^* \bar{D}^*$					$C_a - \frac{5}{3}C_b$	$\frac{\sqrt{2}}{3}E$	$\sqrt{\frac{2}{3}}E$
NJ/ψ						0	0
$N\eta_c$							0

$3/2^{-}$	$\Lambda_c \bar{D}^*$	$\Sigma_c^* \bar{D}$	$\Sigma_c \bar{D}^*$	$\Sigma_c^* \bar{D}^*$	NJ/ψ
$\Lambda_c \bar{D}^*$	A	$-\sqrt{3}B$	В	$\sqrt{5}B$	D
$\Sigma_c^* \bar{D}$		C_a	$\frac{C_b}{\sqrt{3}}$	$\sqrt{\frac{5}{3}}C_b$	$-\frac{E}{\sqrt{3}}$
$\Sigma_c \bar{D}^*$			$C_a + \frac{2}{3}C_b$	$-rac{\sqrt{5}}{3}C_b$	$\frac{E}{3}$
$\Sigma_c^* \bar{D}^*$				$C_a - \frac{2}{3}C_b$	$\frac{\sqrt{5}}{3}E$
NJ/ψ					0

$1/2^{+}$	$\Lambda_c(2595)ar{D}$	$\Lambda_c(2595)\bar{D}^*$	$\Lambda_c(2625)\bar{D}^*$	$NJ/\psi(^2P_{1/2})$	$NJ/\psi(^4P_{1/2})$	$N\eta_c(^2P_{1/2})$
$\Lambda_c(2595)ar{D}$	F_a	$\frac{2}{\sqrt{3}}F_b$	$-\sqrt{rac{2}{3}}F_b$	$rac{1}{6\sqrt{3}}G_a - rac{4}{3\sqrt{3}}G_b$	$rac{1}{3}\sqrt{rac{2}{3}}\left(G_a+G_b ight)$	$rac{1}{2}G_a$
$\Lambda_c(2595)ar{D}^*$		$F_a - rac{4}{3}F_b$	$-rac{\sqrt{2}}{3}F_b$	$-rac{5}{18}G_a-rac{4}{9}G_b$	$-\frac{10\sqrt{2}}{18}G_a + \frac{\sqrt{2}}{9}G_b$	$-\frac{1}{2\sqrt{3}}G_a$
$\Lambda_c(2625)ar{D}^*$			$F_a - \frac{5}{3}F_b$	$-\frac{\sqrt{2}}{9}G_a + \frac{2\sqrt{2}}{9}G_b$	$-\frac{4}{9}G_a - \frac{1}{9}G_b$	$\sqrt{\frac{2}{3}}G_a$
$NJ/\psi(^2P_{1/2})$				0	0	0
$NJ/\psi(^4P_{1/2})$					0	0
$N\eta_c(^2P_{1/2})$						0

(i) employs the preferred production mechanism (ii) $\eta_c N$ predictions possible (iii) other decay mode predictions possible (iv) fitting the full energy range constrains the model (v) $J/\psi N$ branching fractions are controlled by D & E (vi) 4312 (1/2⁻) : $\Lambda_c D$ has zero coupling (vii) 4440 (3/2⁻) : $\Lambda_c D$ has D-wave coupling (viii) 4457 ($1/2^{\pm}$) : cusp(s) explanation (ix) $1/2^{-}$ and $3/2^{-} \Sigma_{c}^{*} D^{*}$ resonances are eliminated by -Cb (x) shoulder and 4450 hump is due to $1/2^{-} \Sigma_{c} D - \Sigma_{c} D^{*}$ interactions + threshold cusp

Develop models with increasing complexity:

i triangles+thresholds only ii add Ca, Cb to generate resonances iii add $J^P = 1/2^+$ channel, iv tune D_s mass v add 4457 1/2+ resonance

Constant background term added coherently.

Case I

Case II

Case III

CaseIV

Case V

		Case 2a/3	Case 2b	Case 4	Case 5
$1/2^{-}$	pole	4312 - 2.4i	4308 - 5.2i	4312 - 2.6i	4312 - 2.4i
	residue $\Lambda_c \bar{D}$	0.0086	0.0194	0.0080	0.0086
	residue $\Lambda_c \bar{D}^*$	3.10	9.8	3.4	3.1
	residue NJ/ψ	0.0015	0.0011	0.0017	0.0015
	residue $N\eta_c$	0.0055	0.0041	0.0060	0.0055
	three body	1.86	1.86	1.86	1.86
$3/2^{-}$	pole	4376.5 - 9.0i	4375 - 10.7i	4376.5 - 9.1i	4376.5 - 8.9
	residue $\Lambda_c \bar{D}^*$	3.11	7.2	3.41	3.12
	residue NJ/ψ	0.0088	0.0085	0.0097	0.0088
	three body	15	15	15	15
$3/2^{-}$	pole	4444 - 2.56i	4440 - 3.3i	4444.5 - 2.56i	4444 - 2.56
	residue $\Lambda_c \bar{D}^*$	1.16	2.2	1.25	1.16
	residue $\Sigma_c^* \bar{D}$	1.7	2.1	1.58	1.70
	residue NJ/ψ	0.0041	0.0036	0.0045	0.0041
	three body	1.86	1.86	1.86	1.86
$1/2^{+}$	pole				4458 - 0i

 $\Sigma_c \bar{D}$

 $\Sigma_c^* \bar{D}$

 $\Sigma_c \bar{D}^*$

 $\Lambda_c(2595)D$

prediction for $\Lambda_b \rightarrow \eta_c p K^-$

Conclusions & Observations

- Data exclude many models.
- Good fits obtained by insufficiently constrained models should not be taken as evidence in favour of the model assumptions.
- $\Lambda_c^{(*)} \bar{D}^{(*)}$ degrees of freedom are natural & important.
- our model incorporates all known experimental constraints, EW phenomenology, and heavy quark symmetry, fits the entire spectrum, and does not predict unseen states.
- "Triangles" explain 'kinks' at $\Lambda_c D$, $\Lambda'_c D^*$ and possibly the 4457 peak ($\Lambda'_c D$).

•Current experiments are at the threshold for observing Pc's

• Strong evidence for exotic pentaquark states:

- 4312 (Σ_cD, 1/2-)
- 4380 (Σ^{*}_cD, 3/2-)
- 4440 (Σ_cD*, 3/2-)
- $4457(1/2-\Sigma_c D^* \text{ threshold cusp } / 1/2 + \text{ triangle})$
- 4508 (Σ_c*D*, 5/2-)

Pcs

T.J. Burns and E.S. Swanson, the LHCb State $P_{\psi s}^{\Lambda}(4338)$ as a Triangle Singularity, 2208.05015

Observation of a $J/\psi\Lambda$ resonance in $B^- \rightarrow J/\psi \Lambda \bar{p}$ decays

LHCb-PAPER-2022-031 in preparation

Discussion on the new $J/\psi \Lambda$ state

First pentaquark candidate $P_{ws}^{\wedge}(4338)$ with strange quark content $c\bar{c}uds$,

 $M_{P_{cs}} = 4338.2 \pm 0.7 \pm 0.4 \, {\rm MeV}$

 $\Gamma_{P_{cs}} = 7.0 \pm 1.2 \pm 1.3 \,\text{MeV}$

 \Rightarrow first pentaquark with spin assigned J^P= $\frac{1}{2}^{-1}$

For theoretical interpretation

Can fit in SU(3) multiplets or are more likely molecular states?

4.35

Relevant Thresholds

dominant production mechanism

but this can be comparable if the Landau conditions are ~ satisfied

	$\Gamma(\bar{\Sigma}_c) \ / \ { m MeV}$	$A \ / \ { m GeV^{-2}}$	Δ / ${\rm GeV^{-2}}$
Set A	70	6	-7
Set B	15	0	-1

TABLE II. Parameter sets A (green) and B (blue) in Fig 2.

