

Groomed jet substructure measurements in heavy-ion collisions

Dhanush Hangal (he/him) September 3, 2022

hangal1@llnl.gov

Jets in the Quark-Gluon Plasma

 Hard scattered partons undergo collisional and radiational energy loss in the QGP medium • Jet yield is observed to be suppressed in heavy-ion collisions compared to pp baseline

•Jet energy loss or "quenching" in QGP characterized using nuclear modification factor (\mathbf{R}_{AA})

Jet substructure vs. suppression

Jet substructure vs. suppression

Splitting Scale $(\sqrt{d_{12}})$

Splitting Scale $(\sqrt{d_{12}})$

Jet Suppression vs. $\sqrt{d_{12}}$

•Suppression of large-radius jets in QGP characterized using its splitting scale $\sqrt{d_{12}}$

Lawrence Livermore National Laboratory

per-NN yields in PbPb $R_{\rm AA}$ yields in pp Jet Constituents : R = 0.2 jets ($p_T > 35$ GeV) $\sqrt{d_{12}} = 84 \text{ GeV}$ $p_{\mathrm{T},2}$) [GeV] 60 $\sqrt{d_{12}} = 59 \text{ GeV}$ $\min(p_{\mathrm{T},1}, \cdot)$ $\sqrt{d_{12}} = 41 \,\,{\rm GeV}$ $\sqrt{d_{12}} = 20 \text{ GeV}$ $\sqrt{d_{12}} = 6 \text{ GeV}$ 0 8.0 0.2 0.4 0.6 ΔR_{12}

Jet Suppression vs. $\sqrt{d_{12}}$

•Characterize a jet using the energy imbalance of its **hardest splitting** (**z**_g) Measured anti-k_⊤ jet $r_{\rm g} = 0.40$ $r_{\rm g}=0$ 0.5 0.4 $\min(p_{T,1}, p_{T,2})$ $+ p_{T,2}$ $p_{\mathrm{T},1}$ 0.2 || |2 0.1 0.003 0.2 0.3 0.01 0.02 0.1 ΔR_{12}

$$z_{g} = \frac{\min(p_{T,i}, p_{T,j})}{p_{T,i} + p_{T,j}}$$

$$z_{g} = \frac{\min(p_{T,i}, p_{T,j})}{p_{T,i} + p_{T,j}}$$

Lawrence Livermore National Laboratory

Cambridge/Aachen (C/A) is an angular-ordered clustering algorithm

$$z_{g} = \frac{\min(p_{T,i}, p_{T,j})}{p_{T,i} + p_{T,j}}$$

$$z_{g} = \frac{\min(p_{\mathrm{T},i}, p_{\mathrm{T},j})}{p_{\mathrm{T},i} + p_{\mathrm{T},j}}$$

$$z_{g} = \frac{\min(p_{\mathrm{T},i}, p_{\mathrm{T},j})}{p_{\mathrm{T},i} + p_{\mathrm{T},j}}$$

Splitting function (CMS)

 $\bullet z_g$ is a measure of energy imbalance of subjets corresponding to a jet's hard splitting • Modification of self-normalized z_g observed in central PbPb collisions relative to pp

$$z_{g} = \frac{\min(p_{\mathrm{T},i}, p_{\mathrm{T},j})}{p_{\mathrm{T},i} + p_{\mathrm{T},j}}$$

Splitting function (CMS)

 $\bullet z_g$ is a measure of energy imbalance of subjets corresponding to a jet's hard splitting • Modification of self-normalized z_g observed in central PbPb collisions relative to pp

$$z_{g} = \frac{\min(p_{\mathrm{T},i}, p_{\mathrm{T},j})}{p_{\mathrm{T},i} + p_{\mathrm{T},j}}$$

Splitting function (ALICE & STAR)

- $\bullet z_g$ is a measure of energy imbalance of subjets corresponding to a jet's hard splitting
- No significant modification of z_g observed in central PbPb collisions relative to pp

$$z_{g} = \frac{\min(p_{\mathrm{T},i}, p_{\mathrm{T},j})}{p_{\mathrm{T},i} + p_{\mathrm{T},j}}$$

Splitting function (ALICE & STAR)

- $\bullet z_g$ is a measure of energy imbalance of subjets corresponding to a jet's hard splitting
- \bullet No significant modification of z_g observed in central PbPb collisions relative to pp

Jet substructure interpretation

•Tension in self-normalized distributions of splitting function, z_g, between CMS vs. ALICE and STAR?

PRL 128 (2022) 102001

Is the jet's hard splitting being modified?

Jet substructure interpretation

•Tension in self-normalized distributions of splitting function, z_g, between CMS vs. ALICE and STAR?

PRL 128 (2022) 102001

 $\min(p_{\mathrm{T},i}, p_{\mathrm{T},j})$

Leticia Cunqueiro

Unfolded jet p_T & r_g distributions

- •Measurements of jet p_T and r_g unfolded to the truth hadron level for pp collisions
- •Results shown differentially in jet r_g and p_T intervals, respectively

$$\frac{\min(p_{\mathrm{T},1}, p_{\mathrm{T},2})}{p_{\mathrm{T},1} + p_{\mathrm{T},2}} > z_{\mathrm{cut}} (=0.2)$$

Unfolded jet $p_T \& r_g$ distributions

Angle of hardest splitting

•Modification of self-normalized distribution of angle of hardest splitting, θ_{g} , observed in central PbPb collisions

Angle of hardest splitting

Modification of self-normalized distribution of angle of hardest splitting observed in central PbPb collisions

•Ratio of absolute cross-sections allows us to keep track of energy loss as a function of the substructure

Angle of hardest splitting

Modification of self-normalized distribution of angle of hardest splitting observed in central PbPb collisions

•Ratio of absolute cross-sections allows us to keep track of energy loss as a function of the substructure

Jet suppression vs. splitting

•Clear ordering observed in jet suppression vs. angle of hardest splitting (r_g)

Jet suppression vs. splitting

- •What is the effect of including angle-dependent grooming in
- Soft-Drop on measuring the hardest splitting angle of a jet?

- •What is the effect of including angle-dependent grooming in
- Soft-Drop on measuring the hardest splitting angle of a jet?

- •What is the effect of including angle-dependent grooming in
- Soft-Drop on measuring the hardest splitting angle of a jet?

Jet Suppression vs. Substructure

- Jet suppression vs. substructure measured using varied Soft-Drop parameters
- can be used to interpret modification of non-perturbative jet components

ATLAS-CONF-2022-026

Jet Suppression vs. Substructure

•Jet suppression vs. substructure measured using varied Soft-Drop parameters can be used to interpret modification of non-perturbative jet components

• Opening angle of the parton splitting (r_g) is correlated with the jet mass (M_g)

Minor modifications observed in central PbPb collisions relative to pp collisions

Lawrence Livermore National Laboratory

Phys. Lett. B776(2018) 249-264

Jet Angularities

• Significant modification observed for jet girth in PbPb compared to Pythia, but not for jet mass (ungroomed jets)

• Non-perturbative components of the jet play a significant role in understanding the modification of jet substructure

Summary

- Jet suppression in the QGP has been measured differentially using complementary substructure observables
- •The jet R_{AA} is observed to depend significantly on many substructure observables

•Many more substructure observables like energy correlators yet to be explored to get a better handle on jet quenching

Large Radius Jets

- •Large radius jets (R=1.0) reconstructed by clustering R=0.2 jets using anti- k_{T}
- •Background-subtracted R=0.2 jets can be used as constituents for substructure measurement
- •Small R (=0.2) jets re-clustered using k_T algorithm, hardest subjets clustered last

ATLAS-CONF-2019-056

ATLAS-CONF-2019-056

Topological Cell Clusters

Track Calo-Clusters (TCCs)

Lawrence Livermore National Laboratory

Track Calo-Clusters (TCCs)

- Objects built using tracks matched to topo-clusters
- Use angular information from charged tracks •
- Energy information from topo-clusters, shared between TCCs
- ϕ modulated background subtraction applied at cell-level in topo-cluster reconstruction in heavy-ion collisions

Large R jet kinematics

ATLAS-CONF-2019-056

Large R jet kinematics

Large R jet systematics

ATLAS-CONF-2019-056

Large R jet systematics

ATLAS-CONF-2019-056

Large R jet RAA

ATLAS-CONF-2019-056

Large R jet RAA

ATLAS-CONF-2019-056

rg with TCCs vs. Truth

Systematic uncertainties

ATLAS-CONF-2022-026

Systematic uncertainties

ATLAS-CONF-2022-026

•What is the effect of including angle-dependent grooming in Soft-Drop on measuring the hardest splitting angle of a jet?

ATLAS-CONF-2022-026

Unfolded jet rg distributions

Unfolded jet p_T distributions

- jet's fragmentation function in the QGP?

•What is the effect of including angle-dependent grooming in Soft-Drop on measuring the hardest splitting angle of a jet? •How do we reconcile the measurement of r_g using varying Soft-Drop parameters with the observed modifications of the

