

Neutron Measurements to Probe the Hadronic Weak Interaction

Murad Sarsour for the NSR Collaboration

Georgia State University

CIPANP 2022

14th Conference on the Intersections of Particle and Nuclear Physics

NN WEAK INTERACTION

- Hadronic Weak Interaction (HWI) between nucleons is not well constrained. Low energy, non-perturbative regime makes calculations and experiments difficult.
 - Short range (~0.01 fm << size of nucleon at ~1 fm)
 - First order sensitive to short range quark-quark correlations in hadrons
 ⇒ gives insight into QCD in the non-perturbative strongly interacting
 limit.
 - Dominated by the strong of interaction
 - Use parity violation (PV) to isolate Weak contribution ⇒ PV effects would probe the degree of Weak-Strong interference at short distance scales without exciting the nucleons
- Effective Theories
 - Meson exchange pictures, π^{EFT} , χ^{EFT} , Large- N_c
- Lattice QCD

NN WEAK INTERACTION

- Dominated by low mass mesons, leads to 6 weak meson coupling constants with $\Delta I = 0, 1, 2$: $h_{\pi}^{1}, h_{\omega}^{0,1}, h_{\rho}^{0,1,2}$
- "Modern picture"
 - Effective (EFT) operators with built-in QCD symmetries and weak & strong potentials
 - Pion-less EFT with 5 low energy contact interaction terms:

$$\Lambda_0^{\mathbf{1}_{S_0}-\mathbf{3}_{P_0}}, \Lambda_0^{\mathbf{3}_{S_1}-\mathbf{1}_{P_1}}, \Lambda_1^{\mathbf{1}_{S_0}-\mathbf{3}_{P_0}}, \Lambda_1^{\mathbf{3}_{S_1}-\mathbf{3}_{P_1}}, \Lambda_2^{\mathbf{1}_{S_0}-\mathbf{3}_{P_0}}$$

- Chiral EFT, again with 5 constants + pion and two-pion exchange
- Large- N_c framework, attempt to reduce to two dominant couplings
- Different experiments sensitive to different linear combinations
 9/2/22
 CIPANP 2022

DDH MODEL: Observables

- Large nuclei: Large PV effects but hard to relate to the underlying observables
- Simple NN systems (np, pp, pD, n³He, n⁴He, pα): Small PV effects but predictions with minimum theoretical uncertainty
- Generally, observables are expressed in terms of theoretically calculated coefficients and coupling constants,

$$O_{PV} = a_{\pi}^{1} h_{\pi}^{1} + a_{\omega}^{0} h_{\omega}^{0} + a_{\omega}^{1} h_{\omega}^{1} + a_{\rho}^{0} h_{\rho}^{0} + a_{\rho}^{1} h_{\rho}^{1} + a_{\rho}^{2} h_{\rho}^{2}$$

DDH Weak Coupling	$\bigl(A_\gamma\bigr)n+p\to D\gamma$	(A_{γ}) nd \rightarrow ty	(φ _{PV}) n-p (μrad/m)	(φ _{PV}) n-α (µrad/m)	р-р	p-α	(A ^p _Z) n³He →tp
a_{π}^{1}	-0.107	-0.92	-3.12	-0.97	0	-0.340	-0.189
a _p ⁰	0	-0.50	-0.23	-0.32	0.079	0.140	-0.036
a _p ¹	-0.001	0.103	0	0.11	0.079	0.047	0.019
a_{ρ}^{2}	0	0.053	-0.25	0	0.032	0	0.0006
a_o	0	-0.160	-0.23	-0.22	-0.073	0.059	-0.033
a _o ¹	0.003	0.002	0	0.22	0.073	0.059	0.041

MORE RECENT THEORETICAL DEVELOPMENTS

- EFT approach leads 5 S-P amplitudes (involving five degrees of freedom), it's model independent and has quantifiable errors and a direct connection to QCD
- > Combined EFT/large- N_c leads to lowest-order (LO) 2D characterization of PNC

Danilov parameter	N _c Trend	Exp't	LO+LQCD	
$\Lambda_0^+ \equiv \frac{3}{4} \Lambda_0^{{}^3S_1 - {}^1P_1} + \frac{1}{4} \Lambda_0^{{}^1S_0 - {}^3P_0}$	$\sim N_c$	~300	301	Girish Muralidhara
$\Lambda_2^{^1S_0-^3P_0}$	$\sim N_c \sin^2 c$	θ _w ~160	-137	(INT 2022), Phys. Lett. B 833 , 137372 (2022)
$\Lambda_0^- \equiv rac{1}{4} \Lambda_0^{^3S_1 - ^1P_1} - rac{3}{4} \Lambda_0^{^1S_0 - ^3P_0}$	$\sim 1/N_c$		-46	101012 (2022)
$\Lambda_1^{^1S_0-^3P_0}$	$\sim \sin^2 \theta_w$		4.67	
$\Lambda_1^{^3S_1-^3P_1}$	$\sim \sin^2 \theta_w$	~740	859	

• S. Gardner, W.C. Haxton, B.R. Holstein, Annu. Rev. Nucl. Part. Sci. 67, 69 (2017)

Observable	Experimental status	LO expectation	LO LEC dependence
$A_p(\vec{n} + {}^3\text{He} \rightarrow {}^3\text{H+}p)$	$(1.55 \pm 0.97) \times 10^{-8}$	-1.8×10^{-8}	$-\Lambda_0^+ + 0.227 \Lambda_2^{^1S_0 - ^3P_0}$
$A_{\gamma}(\vec{n}+d \rightarrow t+\gamma)$	8 × 10 ⁻⁶ (56)	7.3×10^{-7}	$\Lambda_0^+ + 0.44 \Lambda_2^{^1S_0 - {^3P_0}}$
$P_{\gamma}(n+p \rightarrow d+\gamma)$	$(1.8 \pm 1.8) \times 10^{-7} (55)$	1.4×10^{-7}	$\Lambda_0^+ + 1.27 \Lambda_2^{^1S_0 - ^3P_0}$
$\frac{\mathrm{d}\phi^n}{\mathrm{d}z}\Big _{\mathrm{parahydrogen}}$	None	$9.4 \times 10^{-7} \text{ rad m}^{-1}$	$\Lambda_0^+ + 2.7 \Lambda_2^{^1S_0 - ^3P_0}$
$\frac{\mathrm{d}\phi^n}{\mathrm{d}z}\Big _{^4\mathrm{He}}$	$(1.7 \pm 9.1 \pm 1.4) \times 10^{-7}$ (54)	$6.8 \times 10^{-7} \text{ rad m}^{-1}$	Λ_0^+
$A_{\rm L}(\vec{p}+d)$	$(-3.5\pm8.5)\times10^{-8}$ (41)	-4.6×10^{-8}	$-\Lambda_0^+$

The NPDGamma EXPERIMENT

 A_{γ} – P-odd asymmetry in the gammas emitted from polarized slow neutron capture on protons.

- No nuclear structure uncertainty in the interpretation of A_{γ}^{np}
- Small contribution from heavy mesons allowing determination of $h_{\pi}^1 A_{\gamma}^{np} = -0.114h_{\pi}^1 0.001h_{\rho}^1 + 0.002h_w^1$

The NPDGamma EXPERIMENT

The n-³He EXPERIMENT

$$A_{meas} = \frac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}} = P\varepsilon \left(A_{PV} \cos(\theta_p) + A_{PC} \sin(\theta_p) \right)$$

 A_{pv} - P-odd up-down asymmetry in the angular distribution of protons with respect to the neutron spin direction.

n-³He

 $A_{PV} = -0.185 h_{\pi}^1 - 0.038 h_{\rho}^0 - 0.023 h_{\omega}^0 + 0.023 h_{\rho}^1 + 0.05 h_{\omega}^1 - 0.001 h_{\rho}^2$

9/2/22

CIPANP 2022

The n-4He EXPERIMENT

Neutron Spin Rotation (NSR)

$$sin(\phi_{PNC}) = \frac{1}{PA} \frac{N^+ - N^-}{N^+ + N^-}$$

Expected Size: $\frac{d\phi_{PNC}}{dz} \sim 10^{-7} (rad/m)$ Experimental challenges

- Reducing $\vec{\sigma}_n \cdot \vec{B} \Rightarrow \phi_{PC}$
- Effectively canceling what is left
- Controlling noise
- Controlling other systematics

n-4He: NSR II

$$\Delta \varphi_{Bkg} = 2.9 \times 10^{-7} \text{ rad m}^{-1}$$

n-4He: NSR II

$$\sin(\phi_{PNC}) = \frac{1}{PA} \frac{N^+ - N^-}{N^+ + N^-}$$

Measures the horizontal component of neutron spin for a vertically-polarized beam

$\frac{d\phi_{PV}}{dz} = [+2.1 \pm 8.3(\text{stat.})^{+2.9}_{-0.2}(\text{sys.})] \times 10^{-7} \text{rad/m}$ W.M. Snow *et al.*, PRC **83**, 022501(R) (2011) W.M. Snow *et al.*, RSI **86**, 055101 (2015) H. E. Swanson, *et al.*, PRC **100**, 015204 (2019)

NN Weak Amplitudes in EFT+ 1/N_c & NSR

Impact of new/potential experiments on the current status!

S. Gardner, W.C. Haxton, B.R. Holstein, Annu. Rev. Nucl. Part. Sci. 67, 69 (2017)

Observable	Experimental status	LO expectation	LO LEC dependence
$A_p(\vec{n} + {}^3 \operatorname{He} \to {}^3 \operatorname{H+} p)$	$(1.55 \pm 0.97) \times 10^{-8}$	-1.8×10^{-8}	$-\Lambda_0^+ + 0.227 \Lambda_2^{^1S_0 - {^3P_0}}$
$A_{\gamma}(\vec{n} + d \to t + \gamma)$	8 × 10 ⁻⁶ (56)	7.3×10^{-7}	$\Lambda_0^+ + 0.44 \Lambda_2^{^1S_0 - {^3P_0}}$
$P_{\gamma}(n+p \rightarrow d+\gamma)$	$(1.8 \pm 1.8) \times 10^{-7} (55)$	1.4×10^{-7}	$\Lambda_0^+ + 1.27 \Lambda_2^{^1S_0 - ^3P_0}$
$\frac{\mathrm{d}\phi^n}{\mathrm{d}z}$ parahydrogen	None	$9.4 \times 10^{-7} \text{ rad m}^{-1}$	$\Lambda_0^+ + 2.7 \Lambda_2^{^1S_0 - {^3P_0}}$
$\frac{\mathrm{d}\phi^n}{\mathrm{d}z}\Big _{^4\mathrm{Hc}}$	$(2.1 \pm 8.3) \times 10^{-7} \text{rad m}^{-1}$	$6.8 \times 10^{-7} \text{ rad m}^{-1}$	Λ_0^+
$A_{\rm L}(\vec{p}+d)$	$(-3.5\pm8.5)\times10^{-8}$ (41)	-4.6×10^{-8}	$-\Lambda_0^+$

$$\Lambda_0^+ = 717 \times 10^{-7} \rightarrow 264 \times 10^{-7}$$

Michael Gericke (INT 2022)

$$\begin{aligned} \frac{\mathrm{d}\phi_{\mathrm{PV}}}{\mathrm{d}z}\Big|_{^{4}\mathrm{He}} &= 6.8 \times 10^{-7} \mathrm{rad/m} \qquad \longrightarrow \qquad \frac{\mathrm{d}\phi_{\mathrm{PV}}}{\mathrm{d}z}\Big|_{^{4}\mathrm{He}} &= 2.5 \times 10^{-7} \mathrm{rad/m} \\ \text{S. Gardner, W. C. Haxton, B. R. Holstein} \\ \text{Ann. Rev. Nucl. Part. Sci. 67, 69 (2017)} \\ \frac{\mathrm{d}\phi_{\mathrm{PV}}}{\mathrm{d}z}\Big|_{^{4}\mathrm{He}} &= 1.2 \times 10^{-6} \mathrm{rad/m} \qquad \longrightarrow \qquad \frac{\mathrm{d}\phi_{\mathrm{PV}}}{\mathrm{d}z}\Big|_{^{4}\mathrm{He}} &= 4.4 \times 10^{-7} \mathrm{rad/m} \\ \text{R. Lazauskas and Y.-H. Song,} \\ Phys. Rev. C 99, 054002 (2019) \end{aligned}$$

A \leq 10⁻⁷ rad/m precision measurement of n-⁴He spin rotation would provide a useful nonzero result in a field with rich theoretical parameter space and with not many experiments.

Spin

Rotation

Theoretical

Predictions

CIPANP 2022

NIST Center for Neutron Research

NG-C: *

9/2/22

NSR-III: Cryogenics & Target Improvements

NSR-II Potential Systematic Effects

H. E. Swanson et al., PRC 100, 015204 (2019)

Source	Uncertainty (rad/m)	Method
Liquid ⁴ He diamagnetism	2×10^{-9}	calc.
Liquid ⁴ He optical potential	3×10^{-9}	calc.
Neutron E spectrum shift	8×10^{-9}	calc.
Neutron refraction/reflection	3×10^{-10}	calc.
Nonforward scattering	2×10^{-8}	calc.
Uncanceled <i>B</i> field	2.9×10^{-7}	meas.

Dominated by background fields ~100 μ G

120 NSR-II "Reactor On" days

Magnetic Shielding

Background fields dominate systematic

Rotations: 100 μ G \rightarrow 10⁻³ rad (NSR II) 10 μ G \rightarrow 10⁻⁴ rad (NSR III)

Initial measurement of 2 outer layers gives 10-100 µG

- 4 concentric cylindrical MuMetal shields (<10 μG)
- End caps for longitudinal field reduction
- Non-magnetic support structure
- Semi-active field control from trim coils around target fine control over longitudinal field magnitude and gradient

n-⁴He Spin Rotation Target

 Cryomech pulse-tube reliquefier: tested for 3 months of continuous operation

120 NSR-II "Reactor On" days Apparatus inoperable Analyzed data Refilling LHe, Maintenance X Administration Changing $5x5 \text{ cm}^2 \Rightarrow$ target state $10x10 \text{ cm}^2$ Х Calibration 8 Systematics Discarded – targets measurement improperly filled

- Mechanical drive motor and drain actuation done externally at room temp away from sensitive field region
- Centrifugal pump and drains mounted to 4 helium target chambers at 4K

Other Beam-Line Components

Procured by NIST

- Matched Pair of SwissNeutronics Polarizing Benders Courtesy of NIST (m=2.5)
- Attenuates and bends beam by ~15 mRad
- Achieves p > 95% polarization

Procured by BARC in India

- 10cm×10cm, 1.25m and 2.0m non-magnetic supermirror neutron guides (NiMo-Ti)
- m = 2.0, R>90%, matching NGC phase space
- depolarization probability
 / bounce <1%

18

Spin Rotation III

Measures the horizontal component of neutron spin for a vertically-polarized beam

CIPANP 2022

NSR III Status

- ✓ Supermirror Waveguides (new / BARC) Tested (October 2014 at LENS) ✓ Input/output coils (new / UNAM) New supermirror polarizer and analyzer (new / NIST) Tested at LENS ✓ Pi-coil (new / IU) ✓ Ion chamber (new / IU) Tested and functioning as expected ✓ Data Acquisition – Ready
- Liquid helium target
 - ✓ Cryostat
 - \checkmark Helium re-liquefier commissions with equivalent heat load
 - Target and He pump construction and testing in progress

Statistical Projections

	<u>NSR-II</u>	<u>NSR-III</u>			
Intensity	$4.5 \times 10^8 \mathrm{cm}^{-2} \mathrm{s}^{-1}$	$8 \times 10^9 {\rm cm}^{-2} {\rm s}^{-1}$			
Filtered Effective Capture Flux	$2 \times 10^8 {\rm cm}^{-2} s^{-1}$	$1.7 imes 10^9 { m cm}^{-2} s^{-1}$	8.5x		
Beam Area	$5 \mathrm{cm} \times 5 \mathrm{cm}$	$10 { m cm} imes 10 { m cm}$	4x		
PA Transmission	0.0665	0.1225	1.8x		
Polarimeter Transmission	0.086	0.16	1.9x		
DAQ Duty Cycle	0.25	0.5 - 0.75	2x		
Polarization Efficiency $60\% \rightarrow 80\%$ 1.3x — Statistical Error Improvement: $\sqrt{465} \approx 22$					
Sensitivity Improvement: 28x 👞					

Projected Sensitivity Improvement: 28x

- $\sim 10^{-7}$ rad/m within ~ 1 week
- ~10⁻⁸ rad/m with 3 reactor cycles

Theoretical predications:

$$\left.\frac{\mathrm{d}\phi_{\mathrm{PV}}}{\mathrm{d}z}\right|_{^{4}\mathrm{He}}=2.5\times10^{-7}\mathrm{rad/m}$$

Scheduling Delays

NCNR Status:

- COVID19 shutdown significantly impacted the neutron beam lifetime data collection which is currently occupying the NG-C beam line
- Reactor event has resulted in an unplanned shutdown from early 2021-present
- NSRIII n-4He unlikely to see beam at NCNR until 2024, unclear how scheduled shutdown can be utilized for setup

Summary

- HWI is still one of the least understood aspects of nuclear physics. Significant recent theoretical work but still lack a sufficient number of precision measurements to constrain the set of couplings.
- NPDGamma and n³He are the first two recent statistically significant precision measurements in few nucleon systems.
- NSRIII (n⁴He) provides additional, much needed, significant precision measurement in the NN weak sector.
- NSRIII collaboration has an apparatus nearing readiness for an n⁴He spin rotation measurement at the level ~[±1.0(stat) ± 1.0(sys)]×10⁻⁸ rad/m.
- The critical path items are the LHe pump, LHe target, and radiation shielding
- NIST will announce the details of their restart plan in the next couple of weeks 9/2/22 CIPANP 2022

NSR-III Collaboration

J.A. Balta¹, L. Barron-Palos², B.E. Crawford³, C. Crawford⁴, W. Fox¹, J. Fry⁵, C. Haddock⁶, B.R. Heckel⁷, A.T. Holley⁸, S.F. Hoogerheide⁶, K. Lopez¹, M. Luxnat¹, M. Maldonado-Velasquez², T. Mulkey⁹, H.P. Mumm⁶, J.S. Nico⁶, S. Penn¹⁰, S. Santra¹¹, M. Sarsour⁹, W.M. Snow¹, K. Steffen¹, H.E. Swanson⁷, J. Vanderwerp¹

 ¹Indiana University/CEEM
 ²Universidad Nacional Autonoma de Mexico ³Gettysburg College
 ⁴University of Kentucky
 ⁵Eastern Kentucky University
 ⁶National Institute of Standards and Technology ⁷University of Washington
 ⁸Tennessee Technological University
 ⁹Georgia State University
 ¹⁰Hobart and William Smith College
 ¹¹Bhabha Atomic Research Center

Support From: NSF, DOE PAPIIT NIST BARC

Thank You

Backup

Shielding

100mrem/h backgrounds in vicinity of must be attenuated by factor of 100x IU providing in-hand lead, borated poly, and concrete shielding Radiation shielding in engineering safety phase for internal roof reinforcement

PV NSR in Liquid Parahydrogen

- Feasible because strong interaction spin-flip scattering off parahydrogen (S = 0 molecules) is forbidden.
- Largest predicted value by EFT/large-Nc calculations but no experiments to date.

$$\left. \frac{\mathrm{d}\phi_{\mathrm{PV}}}{\mathrm{d}z} \right|_{\mathrm{H}_2} = 9.4 \times 10^{-7} \mathrm{rad/m}$$
 LO LEC Dependence: $\Lambda_0^+ + 2.7 \Lambda_2^{^1S_0 - ^3P_0}$

 Access combination of the LO LECs and along with NSR in 4He offers independent measurements of LO LECs with different systematics from previous measurements

Experiment

- Use the same beamline components as ⁴He with 20 cm target (neutron mean free path in para-hydrogen) – NSR collaboration developed extensive para-hydrogen target experience from npdgamma experiment
 - The target will be operated at 16-17 K where the equilibrium ortho to para hydrogen ratio is 0.03 %. If
 needed, a catalyst of paramagnetic material can be used to convert the ortho-hydrogen to the para
 configuration.
- Preliminary statistical calculations indicate 10-7 rad/m with ~1year of beam
- Higher neutron scattering rate in the hydrogen than liquid helium → extensive simulation studies are
 ongoing to better understand the associated systematics

General Forward Scattering Amplitude:

$$f(0) = A + B[\sigma_n \cdot \mathbf{S}_N] + C[\sigma_n \cdot \mathbf{k}_n] + D[\mathbf{S}_N \cdot \mathbf{k}_n] + E[\sigma_n \cdot (\mathbf{k}_n \times \mathbf{S}_N)]$$

$$P - \text{odd} \qquad P - \text{odd} \qquad P.T - \text{odd}$$

$$P.T - \text{odd}$$

$$Dupolarized Target \implies f(0) = A + C[\sigma_n \cdot \mathbf{k}_n] = f_{PC} + f_{PV}(\sigma_n \cdot \mathbf{k}_n)$$

$$\boxed{\text{Coherent Wave Equation:}}_{\left[\nabla^2 + k_0^2 n^2\right] \langle \psi_c \rangle = 0} \qquad \text{Where} \qquad n = 1 + \frac{2\pi\rho f(0)}{k^2}$$

$$\langle \psi_c \rangle \propto e^{i\mathbf{k} \cdot \mathbf{r}} \rightarrow e^{ink_0 z} = e^{-\text{Im}[n]k_0 z} e^{i\text{Re}[n]k_0 z}$$

$$f_{PV} \propto k \rightarrow \text{Momentum dep. of PV part of (0) gives}_{\text{in absence of resonances}} \qquad \bullet \qquad \theta = \text{Re}[n]k_0 z$$

$$\int_{\sigma_{n-}}^{\sigma_{n+}} \phi_{n+} = kz[1 + \frac{2\pi\rho}{k^2}f_{PC}] + 2\pi\rho z f_{PV}^{i} \qquad f_{PV} = \frac{f_{PV}}{k}$$

$$\int_{\sigma_{n+}}^{\sigma_{n+}} \mathbf{k}_n$$

$$\int_{\sigma_{n+}}^{\sigma_{PV}} \mathbf{k}_n = \frac{1}{\sqrt{2}}[e^{i\phi_+} |\sigma_{n+}\rangle + e^{i\phi_-} |\sigma_{n-}\rangle] \implies \varphi_{PV} = \phi_+ - \phi_- = 4\pi\rho z f_{PV}^{i} \qquad \Rightarrow \qquad \frac{d\phi_{PV}}{dz};$$