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• Hadronic Weak Interaction (HWI) between nucleons is not well constrained. 
Low energy, non-perturbative regime makes calculations and experiments 
difficult.

– Short range (~0.01 fm << size of nucleon at ~1 fm)

• First order sensitive to short range quark-quark correlations in hadrons 
Þ gives insight into QCD in the non-perturbative strongly interacting 
limit.

– Dominated by the strong of interaction

• Use parity violation (PV) to isolate Weak contribution Þ PV effects 
would probe the degree of Weak-Strong interference at short distance 
scales without exciting the nucleons

• Effective Theories

– Meson exchange pictures, 𝜋EFT, 𝜒EFT, Large-Nc

• Lattice QCD
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NN WEAK INTERACTION



• “Traditional picture” (DDH model)

Meson exchange!

– Dominated by low mass mesons, leads to 6 weak meson coupling constants 
with ∆I = 0,1,2:    ℎ!" , ℎ#$,", ℎ&$,",'

• “Modern picture”
– Effective (EFT) operators with built-in QCD symmetries and weak & strong 

potentials

– Pion-less EFT with 5 low energy contact interaction terms:

– Chiral EFT, again with 5 constants + pion and two-pion exchange

– Large-Nc framework, attempt to reduce to two dominant couplings

• Different experiments sensitive to different linear combinations

NN WEAK INTERACTION

3

Weak NN force

~1/100 fm range
~1 fm

Strong NN force

N

NN

N

PC PV
𝜋,𝜌,𝜔

9/2/22 CIPANP 2022



9/2/22 CIPANP 2022 4

• Large nuclei: Large PV effects but hard to relate to the underlying 
observables

• Simple NN systems (np, pp, pD, n3He, n4He, p𝛂): Small PV effects but 
predictions with minimum theoretical uncertainty

• Generally, observables are expressed in terms of theoretically calculated 
coefficients and coupling constants,   

𝑂$% = 𝑎&'ℎ&' + 𝑎() ℎ() + 𝑎(' ℎ(' + 𝑎*)ℎ*) + 𝑎*'ℎ*' + 𝑎*+ℎ*+

DDH MODEL: Observables



Danilov parameter Nc Trend Exp’t LO+LQCD
~300 301

~160 -137

-46

4.67

~740 859
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Ø EFT approach leads 5 S-P amplitudes (involving five degrees of freedom), it’s
model independent and has quantifiable errors and a direct connection to QCD

Ø Combined EFT/large-Nc leads to lowest-order (LO) 2D characterization of PNC

MORE RECENT THEORETICAL DEVELOPMENTS

• S. Gardner, W.C. Haxton, B.R. Holstein, Annu. Rev. Nucl. Part. Sci. 67, 69 (2017)

Girish Muralidhara
(INT 2022), 
Phys. Lett. B 833, 
137372 (2022)
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2.1 ± 8.3 ×10!"rad m!#

1.55 ± 0.97 ×10!$
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The NPDGamma EXPERIMENT

• No nuclear structure uncertainty in the interpretation of 𝐴!
"#

• Small contribution from heavy mesons allowing determination of h$%
𝐴!
"# = −0.114h$% − 0.001h&% + 0.002h'%
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• LANSCE (LANL) : 2006 – 2007

• SNS (ORNL) : 2008 - 2012

Gericke et al., PRC 83, 015505 (2011)
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D. Blyth et al., PRL 121, 242002 (2018)

Michael Gericke (INT 2022)

𝐴!
"# = −1.2 ± 2.1 stat ± 0.2 syst ×10$%

The NPDGamma EXPERIMENT

• DDH Model
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The n-3He EXPERIMENT
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Apv - P-odd up-down asymmetry in the angular 
distribution of protons with respect to the neutron 
spin direction.
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Blyth et al., Phys. Rev. Lett. 125, 131803 (2020)

• SNS (ORNL) : 2014 - 2015
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The n-3He EXPERIMENT

• DDH Model

• Pionless EFT + Large Nc

o Including pp, p𝛼 and 19F, we have (ARNPS 67, 69 (2017))
Λ( = 324 & Λ)* = 717

o Including pp, n3He, we have (Michael Gericke (INT 2022))
Λ( = 183 & Λ)* = 264
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Experimental challenges 
• Reducing �⃗�" 4 𝐵 ⇒ 𝜙+,
• Effectively canceling what is left
• Controlling noise
• Controlling other systematics

Expected Size:
-.&'(
-/

~1001(𝑟𝑎𝑑/𝑚)

𝑠𝑖𝑛 𝜙+2, =
1
𝑃𝐴

𝑁* − 𝑁0

𝑁* + 𝑁0

The n-4He EXPERIMENT

Neutron Spin Rotation (NSR)



n-4He: NSR II
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∆ϕ)*+= 2.9×10$% rad m$,



Measures the horizontal 
component of neutron spin for 
a vertically-polarized beam
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𝑑𝜙()
𝑑𝑧

= +2.1 ± 8.3 stat. *$.'
,'.- sys. ×10*.rad/m

W.M. Snow et al., PRC 83, 022501(R) (2011)
W.M. Snow et al.,  RSI 86, 055101 (2015)
H. E. Swanson,et al., PRC 100, 015204 (2019)

NIST-NG6 2008
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NN Weak Amplitudes in EFT+ 1/Nc & NSR

S. Gardner, W.C. Haxton, B.R. Holstein, Annu. Rev. Nucl. Part. Sci. 67, 69 (2017)
• Impact of new/potential experiments on the current status!

Spin 
Rotation
Theoretical 
Predictions

Michael Gericke (INT 2022)

2.1 ± 8.3 ×10!"rad m!#

1.55 ± 0.97 ×10!$



NIST Center for Neutron Research

Thermal neutrons
Reactor 20 MW
(fission neutrons)

Moderation D2O Cold neutrons
T=20K

Moderation LH 

NSRII

NSRIII /
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4.5´108/cm2/s

8´109/cm2/s

• Ballistic guide; 11 cm x 11 cm at output
• Curved guide (no line-of-sight to reactor)
• Thermal capture fluence rate ≈ 8x109/cm2/s

v NG-C:



9/2/22 CIPANP 2022 15

NSR-III: Cryogenics & Target Improvements

120 NSR-II “Reactor On” days

Changing 
target state

Refilling LHe,
Maintenance
Administration

Apparatus 
inoperable

Analyzed data

Discarded –
targets 
improperly filled

Calibration & 
Systematics 
measurement

NSR-II Potential Systematic Effects
H. E. Swanson et al., PRC 100, 015204 (2019)

Dominated by background fields ~100 𝜇G 

17%

5%

25%
18%

27%

8%
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Target Cryostat

Magnetic Shielding

Rotations: 
100 𝜇G ➔ 10-3 rad (NSR II)
10 𝜇G ➔ 10-4 rad (NSR III)

Initial 
measurement 
of 2 outer 
layers gives 
10-100 μG

• 4 concentric cylindrical MuMetal shields (<10 𝜇G)
• End caps for longitudinal field reduction
• Non-magnetic support structure
• Semi-active field control from trim coils around target — fine control over 

longitudinal field magnitude and gradient

q Background fields 
dominate systematic
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n-4He Spin Rotation Target

• Mechanical drive motor and drain 
actuation done externally at room 
temp away from sensitive field region

• Centrifugal pump and drains mounted 
to 4 helium target chambers at 4K

✘✘

• 5x5 cm2 ⇒
10x10 cm2 

• Cryomech pulse-tube reliquefier: 
tested for 3 months of continuous 
operation

✘
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SM Polarizer/Analyzer

Other Beam-Line Components
Procured by NIST

§ Matched Pair of SwissNeutronics
Polarizing Benders Courtesy of 
NIST (m=2.5)

§ Attenuates and bends beam by 
~15 mRad

§ Achieves p > 95% polarization

SM Guides

Input / Output Coils

Procured by BARC in India
§ 10cm×10cm, 1.25m and 

2.0m non-magnetic 
supermirror neutron 
guides (NiMo-Ti)

§ m = 2.0, R>90%, 
matching NGC phase 
space

§ depolarization probability 
/ bounce <1%

Built at UNAM



Spin Rotation III

• 4.5´108/cm2/s NG6       8´109/cm2/s NGC
• 5cm×5cm NG6           10cm×10cm NGC
• float glass guides (m=0.68)    super-mirror guides (m=2)
• New SM Polarizer/Analyzer
• 100 µG     10 µG in target region
• Be filter cuts spectrum <4Å to limit under rotation by pi-coil
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room-temperature
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input coil

input guides

motion-control
system

output guide

output
coil

cryogenic
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+y
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+z

Measures the horizontal component of neutron spin for a vertically-polarized beam

199/2/22 CIPANP 2022

NIST-NG6 2008
𝑑𝜙!"
𝑑𝑧

= +2.1 ± 8.3 stat. #$.&
'&.( sys. ×10#)rad/m

W.M. Snow et al., PRC 83, 022501(R) (2011)
W.M. Snow et al.,  RSI 86, 055101 (2015)
H. E. Swanson,et al., PRC 100, 015204 (2019)



NSR III Status
ü Supermirror Waveguides  (new / BARC)

o Tested (October 2014 at LENS)
ü Input/output coils   (new / UNAM)
ü New supermirror polarizer and 

analyzer     (new / NIST)
o Tested at LENS

ü Pi-coil (new / IU)
ü Ion chamber (new / IU)

o Tested and functioning as expected
ü Data Acquisition – Ready

o Liquid helium target
ü Cryostat
ü Helium re-liquefier commissions with equivalent heat load
o Target and He pump construction and testing in progress
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Projected Sensitivity Improvement: 28x 

• ~10-7 rad/m within ~1 week

• ~10-8 rad/m with 3 reactor cycles

Statistical Projections

Theoretical predications:
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NCNR Status:

• COVID19 shutdown significantly impacted the 
neutron beam lifetime data collection which is 
currently occupying the NG-C beam line

• Reactor event has resulted in an unplanned 
shutdown from early 2021-present

• NSRIII n-4He unlikely to see beam at NCNR until 
2024, unclear how scheduled shutdown can be 
utilized for setup

Scheduling Delays
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• NSRIII (n4He) provides additional, 
much needed, significant precision 
measurement in the NN weak sector.

• NSRIII collaboration has an apparatus 
nearing readiness for an n4He spin 
rotation measurement at the level  
~ ±1.0 stat ± 1.0 sys ×100H rad/m.

• The critical path items are the LHe
pump, LHe target, and radiation 
shielding

• NIST will announce the details of their 
restart plan in the next couple of weeks

Summary
• HWI is still one of the least understood aspects of nuclear physics.

Significant recent theoretical work but still lack a sufficient number of
precision measurements to constrain the set of couplings.

• NPDGamma and n3He are the first two recent statistically significant 
precision measurements in few nucleon systems.



Thank You
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Backup
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100mrem/h backgrounds in vicinity of must be attenuated by factor of 100x
IU providing in-hand lead, borated poly, and concrete shielding
Radiation shielding in engineering safety phase for internal roof 
reinforcement

Shielding
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PV NSR in Liquid Parahydrogen
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