Neutrino Village & Mt. Andyrchi North Caucasus Kabardino-Balkarian Republic Baksan Valley The hunt for sterile neutrinos – the BEST experiment – and other recent short-baseline results

> Ralph Massarczyk Los Alamos National Laboratory LA-UR-21-30292

A bit of history of gallium based neutrino searches

• Search for solar neutrinos using neutrino capture in Gallium

 v_e + ⁷¹Ga \rightarrow ⁷¹Ge + e⁻

- Russian(Sowjet)-American-Gallium Experiment started in the 80s at Baksan – SAGE
- The Gallium Experiment started data taking in '91 at Gran Sasso (GALLEX, later GNO)

The Gallium Solar Neutrino Experiments

Large Mass (~30 - 50t of liquid Ga)

Deep Underground

Radiochemical extraction

SAGE and GALLEX Results for Solar Neutrinos

- SAGE/GALLEX/GNO: 66.1 ± 3.1 SNU
- Evidence for the p-p chain reactions for solar neutrino production in the Sun.

Ga-Solar Neutrino Experiments

Neutrino flux		FLUX in SNU
Bahcall	Total neutrino flux prediction	132 (20)
	Electron neutrino flux (56-60%)	74 (11)
SAGE	2009 publication	65 (6)
GALLEX	2010 publication	67 (7)

Ga-Solar Neutrino Experiments

Neutrino flux		FLUX in SNU
Bahcall	Total neutrino flux prediction	132 (20)
	Electron neutrino flux (56-60%)	74 (11)
SAGE	2009 publication	65 (6)
GALLEX	2010 publication	67 (7)

	FLUX in 10 ¹⁰ cm ⁻² s ⁻¹
	5.98-6.03
2018 Nature, direct measurement	6.1 (10)
2009 publication, total flux and P _{ee}	6.0 (11)
	2018 Nature, direct measurement 2009 publication, total flux and P _{ee}

Ga-Solar Neutrino Experiments

Neutrino flux		FLUX in VU
Bahcall	Total neutrino flux prediction	20)
	Electron neutrino flux (56-6 dire	
SAGE	2009 public other	65 (6)
GALLEX	2010 and s	67 (7)
	colar fluments	
pp chain	nt of seasure.	FLUX in 10 ¹⁰ cm ⁻² s ⁻¹
Bahcall and Solareeme	n. me	5.98-6.03
BOP AB	2018 Nature, direct measurement	6.1 (10)
	2009 publication, total flux and P _{ee}	6.0 (11)

From solar neutrinos to neutrinos from sources

- Measurements of radioactive sources to confirm sensitivity
- ⁵¹Cr and ³⁷Ar sources
- Compare the expected rate with the measured rate
- Requires cross section and v_e flux

An unexpected result - The Ga Anomaly

- Measurements of radioactive sources to confirm sensitivity
- ⁵¹Cr and ³⁷Ar sources
- Compare the expected rate with the measured rate
- Requires cross section and v_e flux

Measured rates of 71 Ga(v_e ,e) 71 Ge are lower than that predicted from the known inputs

The Ga Anomaly

Measured rates of $^{71}\mbox{Ga}(\nu_e,e)^{71}\mbox{Ge}$ are lower than that predicted from the known

Is this disappearance due to oscillation into sterile neutrinos ?

Evidence for sterile neutrinos (v_s) ?

The decreased rate of v_e detection has been interpreted with the hypothesis that the v_e are oscillating into undetected v_s .

$$P_{ee}(E_{\nu},r) = 1 - \sin^2 2\theta \sin^2 \left(1.27 \frac{\Delta m^2 [\text{eV}^2] r[\text{m}]}{E_{\nu} [\text{MeV}]} \right)$$

 $E_v \simeq 1$ MeV, L $\simeq 1$ m.

Best fits tend toward high Δm^2 and sin²2q.

Some references

PRD 78 (2008) 073009, PLB 795 (2019) 542, arXiv:2001.10064, PRD 86 (2012) 113014, NP B168 Proc. Supp. (2007) 344, PRD 97 (2018) 073001, NP B235 Proc. Supp. (2013) 214, J. Phys. G: Nucl. Part. Phys. 43 (2016) 033001

A (light) sterile neutrino ?

- Extension of the Standard model
- Can be useful for a number of problems depending on the **mass**

TeV or higher	Seesaw mechanism
Several hundred GeV or more	Leptogenesis, baryon asymmetry
keV	Dark matter
eV	Oscillation anomalies

A (light) sterile neutrino ?

- Extension of the Standard model
- Can be useful for a number of problems depending on the mass

TeV or higher	Seesaw mechanism
Several hundred GeV or more	Leptogenesis, baryon asymmetry
keV	Dark matter
eV	Oscillation anomalies

Baksan Experiment on Sterile Transitions (BEST)

- Neutrinos produced at center of Ga by ⁵¹Cr decay: ${}^{51}Cr + e^- \rightarrow {}^{51}V + v_e$
- Monochromatic spectrum of a compact source
- Precisely known <u>intensity of the source</u> (3.4 MCi ~ 10¹⁷ Bq)
- A search for electron neutrino disappearance via charged-current (CC) reaction only:

 $v_e + {}^{71}Ga \rightarrow {}^{71}Ge + e^{-1}$

- Two independent zones allowing studies on the dependence of the rate on the distance to the source.
- <u>Very Short Baseline</u>
- Very well-known experimental procedures
- Simple interpretation of results

Construction started in 2011

Ralph Massarczyk, CIPANP 2022

Neutrino Source

- Irradiated for ~100 days with thermal neutrons in the SM-3 reactor to produce ⁵¹Cr neutrino source
- Thermal neutron flux density 5×10¹⁵ n/(cm² s)
- Activity at 14:02 on July 5, 2019
 <u>A = 3.414 ± 0.008 MCi</u>

⁵¹Cr (27.7 days) 427 keV v (9.0%) 432 keV v (0.9%) 747 keV v (81.6%) 752 keV v (8.5%) 320 keV γ ⁵¹V (stable)

JINST 16 (2021) P04012

Simple and very well-understood neutrino spectrum

4 kg 97%-enriched ⁵⁰Cr, 26 chromium disks h = 4 mm, \varnothing 84 and 88 mm.

Installation and Operation

- Expose gallium targets to the source (10 days)
- Pump Ga into chemical reactors and extraction
- Count the extracted Ge-gas in proportional counters (up to 100 days)
- 4. Measure source activity
- 5. Repeat 10 x

⁷¹Ge Decay

- Extracted GeH₄(Xe) placed in proportional counters
- Half-life of 11.4 d, ground state transition
- K, L, M-shell Capture
- Detection of Auger-electron and x-ray

⁷¹Ge Candidate Event Selection

- Energy Selection
- Time tagging
- Anti-coincidence with Nal system (1/3 of events removed)
- Pulse shape analysis
 - Alpha-induced events
 - High-voltage breakdowns
 - Rise-Time analysis to suppress Compton background

Phys. Rev. C 105, 065502 (2022)

Likelihood Fit for each extraction sample

Maximum likelihood fit to the t and E

- p: ⁷¹Ge production rate, 11.4-d half-life
- b: background rate, constant in time
- ε: overall efficiency
- w_p(E) /w_b(E) : energy weight factors
- Δ: probability an event will during counting
- τ : total counting time

Predicted Production Rates

Production rates are predicted from cross section

 $P_{ee}(E_{\nu},r) = 1 - \sin^2 2\theta \sin^2 \left(1.27 \frac{\Delta m^2 [\text{eV}^2] r[\text{m}]}{E_{\nu} [\text{MeV}]} \right)$ $R_j = \frac{n\sigma A}{4\pi} \int_{V_j} \frac{P_{ee}(r)}{r^2} d\vec{x} \approx V_0 \frac{1}{N} \sum_{i=1}^N \frac{P_{ee}(r)}{r^2} \Theta_j(\vec{x}_i)$

		Uncert	ainty
	Value	Magnitude	%
Atomic density $D = \rho N_0 f_1 / M$			
Ga density ρ (g Ga/cm ³)	6.095	0.002	0.033
Avogadro's number N_0 (10 ²³ atoms Ga/mol)	6.0221	0.0	0.0
Ga molecular weight M (g Ga/mol)	69.72307	0.00013	0.0002
Atomic density $D (10^{22} \text{ atoms } {}^{71}\text{Ga/cm}^3)$	2.1001	0.0008	0.037
Source activity at reference time A , MCi	3.414	0.008	0.23
Cross section σ (10 ⁴⁵ cm ² / (⁷¹ Ga atom ⁵¹ Cr decay)], Bahcall	5.81	+0.21, -0.16	+3.6, -2.8
Path length in $Ga < L_{in} > (cm)$	52.03	0.18	0.3
Path length in $Ga < L_{out} > (cm)$	54.41	0.18	0.3
Predicted production rate (⁷¹ Ge atoms/d), R_{In}	69.41	+2.5, -2.0	+3.6, -2.8
Predicted production rate (⁷¹ Ge atoms/d), R_{Out}	72.59	+2.6, -2.1	+3.6, -2.8

BNO INR RAS

Counting Results

Counting Results

Counting Results vs. Predicted Rates

Predicted vs. Measured Production Rates

	INNER Volume	OUTER Volume
Predicted	$69.4_{-2.0}^{+2.5}$	$72.6^{+2.6}_{-2.1}$
Measured	54.9 <u>+</u> 2.9	55.6 ± 3.1
Ratio	0.79 <u>+</u> 0.05	0.77 ± 0.05

4.2σ and 4.8σ less than the unity

Note:
$$\frac{0.77 \pm 0.05}{0.79 \pm 0.05} = 0.97 \pm 0.07$$

Similar deficits observed in both zones

Oscillation Interpretation

Exclusion curves are calculated by a global minimization of χ^2 :

$$\chi^2(\Delta m^2, \sin^2 2\theta) = (\mathbf{R}^{\text{meas.}} - \mathbf{R}^{\text{calc.}})^{\mathrm{T}} \mathbf{V}^{-1} (\mathbf{R}^{\text{meas.}} - \mathbf{R}^{\text{calc.}})$$

 $R^{\text{meas.}}$: vector of measured rates $R^{\text{calc.}}$: vector of calculated rates with $R_i^{\text{calc.}}(\Delta m^2, \sin^2 2\theta)$ V: covariance matrix

Combined analysis with other Ga source experiments

Comparison to Other Oscillation Results

$$P_{ee}(E_{\nu}, r) = 1 - \sin^2 2\theta \sin^2 \left(1.27 \frac{\Delta m^2 [\text{eV}^2] r[\text{m}]}{E_{\nu} [\text{MeV}]} \right)$$

Short base line searches (tens of meter or less)

Comparison to Other Oscillation Results

DANSS: Int. J. Mod. Phys. A 35, 2044015 (2020) Prospect: PRD 103,032001 (2021) Stereo: PRD 102, 052002 (2020) RENO: PRL 125, 191801 (2020) RENO+NEOS: PRD 105, L111101 (2022) KATRIN: PRL 126, 091803 (2021) MicroBooNE: PRL 128, 241802 (2022) RAA: PRD 83, 073006 (2011) Neutrino-4: PRD 104, 032003 (2021) Model indep. solar: PLB 816, 136214 (2021)

Numerous new experimental, phenomenological, and theoretical results over the last 2-3 years

Comparison to Other Oscillation Results

DANSS: Int. J. Mod. Phys. A 35, 2044015 (2020) Prospect: PRD 103,032001 (2021) Stereo: PRD 102, 052002 (2020) RENO: PRL 125, 191801 (2020) RENO+NEOS: PRD 105, L111101 (2022) KATRIN: PRL 126, 091803 (2021) MicroBooNE: PRL 128, 241802 (2022) RAA: PRD 83, 073006 (2011) Neutrino-4: PRD 104, 032003 (2021) Model indep. solar: PLB 816, 136214 (2021)

Numerous new experimental, phenomenological, and theoretical results over the last 2-3 years

Recent short base line neutrino results

• Reactor based

- $\,\circ\,$ Design restrictions due to available space
- Backgrounds due to ambient neutron flux or cosmogenic
- $\,\circ\,$ Energy and source distribution
- ✓ High (constant) neutrino flux
- ✓ Segmented detectors or movable (relative measurements)
- Other efforts
 - µBooNE
 - KATRIN

$$P_{ee}(E_{\nu}, r) = 1 - \sin^2 2\theta \sin^2 \left(1.27 \frac{\Delta m^2 [\text{eV}^2] r[\text{m}]}{E_{\nu} [\text{MeV}]} \right)$$

Neutrino-4

- Located at the SM-3 reactor at Dimitrovgrad ٠ (also used for BEST source production)
- Liquid scintillator + Gd based
- Moveable detector, 6.4 11.4 m ٠
- Observation of L/E dependence ٠ relative to a base-line averaged spectrum
- Data taking with upgraded detector planned 2023-24 ٠

Best fit point in agreement with Gallium experiments

RENO and NEOS

RENO

- At YongGwang
- Liquid Scintillator + Gd
- 2200 days of data

NEOS

- At Daya Bay
- Liquid Scintillator + Gd
- Updates from NEOS-II expected to be published soon

Joint analysis is making use of a different lengths

region agrees with Gaexperiment

Prospect, Stereo and DANSS

Prospect (HFIR, 6.7 – 9.2 m)

- Located at HFIR, Oak Ridge
- Liquid scintillator + Li based
- Highly segmented detector
- Updates in analysis and upgrade to Prospect II

Stereo (ILL, Grenoble, 9.4 -11.2m)

- Liquid scintillator + Gd based
- Segmented detector

DANSS (Kalininskaya Power Plant, 10-12m)

- Movable
- Plastic scintillator + Gd

Strong rejection of

Gallium and

•

μΒοοΝΕ

- Combined analysis of MiniBooNE and μBooNE data to evaluate background contributions (new analysis coming)
- Not short baseline (470m), but high distance/energy
- Liquid Argon TPC at Fermilab's Neutrino beamline
- Sterile neutrinos are one possible explanation discussed

Best fit point in agreement with Gallium experiments

$$P_{ee}(E_{\nu}, r) = 1 - \sin^2 2\theta \sin^2 \left(1.27 \frac{\Delta m^2 [\text{eV}^2] r[\text{m}]}{E_{\nu} [\text{MeV}]} \right)$$

36

KATRIN

- Neutrino mass experiment
- Sterile neutrino would create a shape distortion close to the endpoint

 $\frac{\mathrm{d}\Gamma}{\mathrm{d}E} = \left(1 - |U_{\mathrm{e}4}|^2\right) \frac{\mathrm{d}\Gamma}{\mathrm{d}E} (m_\beta^2) + |U_{\mathrm{e}4}|^2 \frac{\mathrm{d}\Gamma}{\mathrm{d}E} (m_4^2)$ light neutrino heavy neutrino

- Future run will complement reactor searches
- Searches for keV sterile neutrinos will follow

9/1/2022

KATRIN

- Neutrino mass experiment
- Sterile neutrino would create a shape distortion close to the endpoint

 $\frac{d\Gamma}{dE} = (1 - |U_{e4}|^2) \frac{d\Gamma}{dE} (m_{\beta}^2) + |U_{e4}|^2 \frac{d\Gamma}{dE} (m_{4}^2)$ light neutrino heavy neutrino

- Future run will complement reactor searches
- Searches for keV sterile neutrinos will follow

So what's next – A general overview

- More data coming in and on-goings analysis by various groups
- New experiments, e.g. SoLid, SBND ...
- Detector upgrades ongoing or planned
 - Larger detector
 - Improved Signal to background arrangement
- KATRIN and µBooNE + miniBooNE
 complementary efforts

BNO INR RAS

Phys. Rev. Lett. 128, 232501 (2022) Phys. Rev. C 105, 065502 (2022)

So what's next – A better BEST ?

Because the rate in the two volumes is equally depressed, a number of potential explanations beyond oscillations have been considered. No clear alternative has been identified.

Experimental features that have been studied without finding a cause for the anomaly

- Cross Section
- Source Strength
- Extraction Efficiencies
- Counting Efficiencies
- Average Path Length

		Uncert	ainty
	Value	Magnitude	%
Atomic density $D = \rho N_0 f_1 / M$			
Ga density $ ho ~({ m g~Ga/cm^3})$	6.095	0.002	0.033
Avogadro's number N_0 (10^{23} atoms Ga/mol)	6.0221	0.0	0.0
Ga molecular weight M (g Ga/mol)	69.72307	0.00013	0.0002
Atomic density $D \ (10^{22} \text{ atoms}^{71} \text{Ga/cm}^3)$	2.1001	0.0008	0.037
Source activity at reference time A , MCi	3.414	0.008	0.23
Cross section σ (10 ⁴⁵ cm ² / (⁷¹ Ga atom ⁵¹ Cr decay)], Bahcall	5.81	+0.21, -0.16	+3.6, -2.8
Path length in $Ga < L_{in} > (cm)$	52.03	0.18	0.3
Path length in $Ga < L_{out} > (cm)$	54.41	0.18	0.3
Predicted production rate (⁷¹ Ge atoms/d), R_{In}	69.41	+2.5, -2.0	+3.6, -2.8
Predicted production rate (⁷¹ Ge atoms/d), R_{Out}	72.59	+2.6, -2.1	+3.6, -2.8

So what's next – A better BEST ?

Because the rate in the two volumes is equally depressed, a number of potential explanations beyond oscillations have been considered. No clear alternative has been identified.

- Shorter Radius
 - Smaller inner volume \rightarrow smaller source needs R&D.
 - Half the volume, need 8x the source strength for same rate
- Higher energy source
 - ⁶⁵Zn source \rightarrow 1.35 MeV vs. 0.75 MeV
 - Almost twice the cross section.
 - 6-7 kg of enriched ⁶⁴Zn to produce 0.5 MCi.
 - About 9x longer half life (244 d)

9/1/2022

Summary:

- BEST observed a reduced rate in both measurement volumes, <u>but no distance dependence</u>
- The Ga Anomaly is reaffirmed
- Results are consistent with, but no proof of, oscillations

Summary:

- BEST observed a reduced rate in both measurement volumes, <u>but no distance dependence</u>
- The Ga Anomaly is reaffirmed
- Results are consistent with, but no proof of, oscillations
- Some experimental results from µBooNE or Neutrino-4 also hint to the existence of non-standard model neutrinos
- A number of reactor based searches and KATRIN partially exclude the same parameter space

Summary:

Join us as a PostDoc to work on neutrinos: IRC112442 @ jobs.lanl.gov

- BEST observed a reduced rate in both measurement volumes, <u>but no distance dependence</u>
- The Ga Anomaly is reaffirmed
- Results are consistent with, but no proof of, oscillations
- Some experimental results from µBooNE or Neutrino-4 also hint to the existence of non-standard model neutrinos
- A number of reactor based searches and KATRIN partially exclude the same parameter space
- This could be first steps into a whole "dark (?)" sector
- Interesting times lay in front of us

Backups

Backups

- Construction began 2011
- Source Arrived: July 5, 2019
- Exposures: July 5 Oct. 13, 2019
- Counting: July 16, 2019 Mar. 20, 2020
- Counter Calibration: Mar. 2020 Jan. 2021
- Results and technical draft posted:

Sept. 2021 and Feb 2022

arXiv:2109.11482 and arXiv:2201.07364

BNO INR RAS

SAGE and GALLEX Neutrino Source Experiments

Neutrino sources

- ⁵¹Cr: 747 keV (81.6%), 427 keV (9.0%), 752 keV (8.5%), 432 keV (0.9%)
- ³⁷Ar: 811 keV (90.2%), 813 keV (9.8%)

	GALLEX:		SAGE:			BEST	
1994 –1995	$A(Cr_1)$ = 1.714 \pm 0.036 MCi	1994 –1995	$A(Cr) = 0.517 \pm 0.006$ MCi	2019 – 2020	A(Cr)	= 3.414 ± 0.008 M	ИCi
1995 –1996	$A(Cr_2) = 1.868 \pm 0.073$ MCi	2004	$A(Ar) = 0.409 \pm 0.002$ MCi				
<u>Results:</u>							
	GALLEX:		SAGE:			BEST	
PLB 342 (1995)	$R_1(Cr) = 0.953 \pm 0.11$	PRC 59 (1999)	$R_3(Cr) = 0.95 \pm 0.12$	s	submitted	this talk	
PLB 420 (1998)	$R_2(Cr) = 0.812 \pm 0.10$	PRC 73 (2006)	$R_{4}(Ar) = 0.791 \pm 0.084$				

R – ratio of the measured production rate to that expected from the cross section (PRC 56 (1997) 3391) (no uncertainty on cross section included)

Source Activity Measurements

1) Move the source into a lead container

2) Measure γ spectrum at 21.65 m with a Ge detector (1h)

3) Move the source into the calorimeter

4) Measure the heat emitted by the source (20-21 h)

Extraction Efficiency of ⁷¹Ge and Ge Carrier

Efficiency is measured by adding a known amount of (stable) Ge and measuring the mass of extracted Ge (Int. J. Mass Spec. 392 (2015) 41)

Amount of added Ge carriers:

- 2.4 µmol ⁷²Ge (92%)
- 2.4 µmol ⁷⁶Ge (95%)
- Mean extraction efficiency from Ga: 98%
- Mean overall efficiency (including GeH₄ synthesis): 96%

Q-Value Measurements

Penning trap Q-value determination of the 71 Ga(v,e⁻) 71 Ge reaction.

First direct Q-value measurement of the ⁷¹Ga(v,e⁻)⁷¹Ge reaction was carried out in a Penning trap using the TITAN (TRIUMF's Ion Trap for Atomic and Nuclear science) mass-measurement facility at ISAC/TRIUMF.

Q-value obtained from combined results of the two independent mass-measurement methods is 233.7±1.2 keV, which is in agreement with the previously accepted Q-value for the v cross-section calculations.

The TITAN result excludes an incorrect Q-value as a cause for the gallium anomaly observed in the GALLEX and SAGE calibration runs.

Measurement Penning trap

RFQ

The TITAN

Beamline

Buncher & Cooler

ISAC Beamlin

Cooler Pennina

Ralph Massarczyk, CIPANP 2022

Most Recent Q-Value measurement (Int. J. Mass Spec. 406 (2016) 1)

Result 232.443 ± 0.093 ±0.04%

Claims uncontrolled systematic uncertainties were present in TITAN measurements.

Work on creation of the two-zone reactor for the BEST Ga target

In August-September 2015, two solar measurements were carried out from the BEST gallium target. Extractions and counting of ⁷¹Ge atoms were performed independantly for each zone.

The result of the analysis of these measurements is **66.4**^{+28.1}_{-24.3} SNU, agrees with the result of the period of measurements 1990 to 2014, **64.6** \pm **2.4** SNU (with statistical uncertainty only).

Pulse Shape Analysis

• The rise time cut values were measured for <u>each counter</u> used in the experiment.

- A trace of active 71 GeH₄ was added to each counter to determine its T_N.
- Counters filled with typical gas mixture. Efficiency accounts for pressure and GeH₄ fraction.
- 96% acceptance window for each detector was determined (limit on T_N).

		T_N					\overline{T}_N							
Extraction name	Counter name	Pressure (mmHg)	GeH4 fraction (%)	Syst. Slot	K-peak	L-peak		Extraction name	Counter name	Pressure (mmHg)	GeH4 fraction (%)	Syst. Slot	K-peak	L-peak
Inner-1	YCT92	630	8.8	3.5	17.6	13.0		Outer-1	YCN113	635	9.5	3.4	13.6	9.1
Inner-2	YCT2	640	9.5	3.2	16.6	10.1		Outer-2	YCT3	635	9.5	3.1	16.4	10.3
Inner-3	YCN43	650	9.3	Z.3	13.2	10.0		Outer-3	YCNA9	640	10.5	Z.4	18.8	13.2
Inner-4	YCT97	640	9.2	3.7	17.3	11.4		Outer-4	YCT9	635	9.6	3.6	14.9	9.1
Inner-5	YCN46	650	9.5	Z.8	15.2	11.3		Outer-5	YCN41	635	10.0	$\mathbf{Z.1}$	13.4	10.3
Inner-6	YCN42	640	9.8	3.8	13.2	9.1		Outer-6	YCT4	630	9.0	3.3	13.2	10.2
Inner-7	YCT92	640	9.3	3.5	17.6	13.0		Outer-7	YCN113	630	10.3	3.4	13.6	9.1
Inner-8	YCT2	645	9.5	3.2	16.6	10.1		Outer-8	YCT3	640	9.5	3.1	16.4	10.3
Inner-9	YCN43	640	9.1	Z.3	13.2	10.0		Outer-9	YCNA9	635	9.9	Z.4	18.8	13.2
Inner-10	YCT97	650	9.1	3.7	17.3	11.4		Outer-10	YCT9	645	9.5	3.6	14.9	9.1

Exposure and Extraction

	Source exposure			Extraction		Massa	Extraction efficiency		Extraction		Macca	Extraction efficiency	
	Begin		End	from cy	from cylindrical target		Lixu detroit enterency		from spherical target		Ga		enterency
						(tong)		into			(tone)		into
Dayyear	Mo Da Hr Mn	Dayyear	Mo Da Hr Mn	Name	Date (2019)	(tons)	from Ga	GeH4	Name	Date (2019)	(tons)	from Ga	GeH4
186.585	07.05 14:02	196.376	07.15 09:02	Cr1	15 Jul 13:59	40.09	0.97	0.91	Cr11	15 Jul 16:01	7.4	0.98	0.93
197.362	07.16 08:41	206.372	07.25 08:56	Cr2	25 Jul 13:51	40.09	0.97	0.92	Cr21	25 Jul 16:32	7.4	0.97	0.92
207.282	07.26 06:47	216.374	08.04 08:59	Cr3	04 Aug 12:47	40.09	0.98	0.97	Cr31	04 Aug 16:37	7.4	0.97	0.92
217.286	08.05 06:52	226.371	08.14 08:54	Cr4	14 Aug 12:51	40.09	0.98	0.94	Cr41	14 Aug 15:35	7.4	0.97	0.92
227.258	08.15 06:12	236.458	08.24 11:00	Cr5	24 Aug 14:35	40.09	1.00	0.97	Cr51	24 Aug 17:17	7.4	0.99	0.96
237.342	08.25 08:13	246.37	09.03 08:51	Cr6	03 Sep 12:35	40.09	1.00	0.98	Cr61	03 Sep 15:18	7.4	1.00	1.00
247.243	09.04 05:50	256.368	09.13 08:50	Cr7	13 Sep 12:29	40.09	1.00	1.00	Cr71	13 Sep 15:11	7.4	1.00	1.00
257.241	09.14 05:47	266.37	09.23 08:52	Cr8	23 Sep 12:32	40.09	1.00	1.00	Cr81	23 Sep 15:17	7.4	1.00	1.00
267.240	09.24 05:46	276.369	10.03 08:51	Cr9	03 Oct 12:27	40.09	0.95	0.88	Cr91	03 Oct 15:00	7.4	0.97	0.92
277.200	10.04 04:49	286.367	10.13 08:48	Cr10	13 Oct 12:26	40.09	0.99	0.95	Cr101	13 Oct 14:59	7.4	0.99	0.94

Source exposure of the two concentric zones

- 10 exposures
- Mean exposure time: 9.18 d
- Masses: 7.4 t (inner) / 40.09 t (outer)

Chemical extraction of ⁷¹Ge

- Efficiency is measured by adding a known amount of (inactive) Ge and measuring the mass of extracted Ge
- Amount of added Ge carriers:
 - 2.4 μmol ⁷²Ge (92%); 2.4 μmol ⁷⁶Ge (95%)
- Mean extraction efficiency from Ga: 98%
- Mean overall efficiency (incl. GeH₄ synthesis): 96% Ralph Massarczyk, CIPANP 2022

The extracted Ge activity is measured using proportional counters

Gas Synthesis Procedure (PRC 60 (1999) 055801)

- NaOH is added to concentrated aqueous solution to adjust pH.
- Air is swept out with a He flow.
- Low tritium NaBH₄ dissolved in H₂0 is added.
- Mixture is heated.
- The Ge is reduced by NaBH₄ to make GeH₄.
- He sweeps the GeH₄ onto a chromatography column at -196°C.
- When reaction complete, column is warmed and GeH₄ is eluted and captured.
- A measured quantity of old low-background Xe is added to make gas mixture.

BNO INR RAS

Systematic Uncertainties

Parameter	Value	Uncertainty
Ga Density $\rho ~(g/cm^3)$	6.095	± 0.002
Avogadro's Number N_A (10 ²³ atoms Ga/mol)	6.0221	negiligible
Ga molecular weight M (g Ga/mol)	69.72307	± 0.00013
⁷¹ Ga isotopic abundance f (%)	39.8921	± 0.0062
Atomic Den. $n = \rho N_A f / M (10^{22} \text{ atoms } {}^{71}\text{Ga}/\text{cm}^3)$	2.1001	± 0.0008
Source Activity at Ref. Time A (MCi)	3.414	± 0.008
Average Path Length Inner Vol. L_{in} (cm)	52.03	± 0.18
Average Path Length Outer Vol. L_{out} (cm)	54.41	± 0.18
Cross section $\sigma (10^{-45} \text{ cm}^2)$	5.81	+0.21, -0.16

Origin of uncertainty	Uncertainty (%)
Chemical extraction efficiency	
Efficiency of extraction from Ga metal	± 1.0
Efficiency of synthesized into GeH ₄	±1.3
Carrier carryover	-
Mass of gallium	-
Chemical extraction subtotal	± 1.6
Counting efficiency	
Calculated efficiency	
Volume efficiency	-1.3, +1.5
Peak efficiency	±1.1
Simulations to adjust for counter filling, Monte Carlo interpolation	± 0.6
Calibration statistics	
Centroid	±0.1
Resolution	± 0.3
Rise time cut	-
Gain variations	+0.4
Counting efficiency subtotal	-1.5 +1.7
Residual radon after time cuts	-0.05
Solar neutrino background	± 0.20
⁷¹ Ge carryover	± 0.04
Subtotal	±0.22
Energy weihting in analysis	±0.15
Total systematic uncertainty	-2.5 +2.6

⁵¹Cr Energy Release per Decay (J. Phys.: Conf. Ser. 798 (2017) 012140)

Table 1. The total energy release with Cr-51 decay.												
Type of energy release	Energy, keV	Contribution to ⁵¹ Cr decay	Energy release with ⁵¹ Cr decay, keV									
Gamma rays	320.0835 (4)	0.0991 (2)	31.720 (64)									
K-capture	5.465	0.8919 (17)	4.874 (9)									
L-capture	0.628	0.0927 (14)	0.0582 (9)									
M-capture	0.067	0.0154	0.001									
inner bremsstrahlung	751 (max)	3.8×10 ⁻⁴ ×0.902 (±10%)	0.096 (10)									
inner bremsstrahlung	430 (max)	1.2×10 ⁻⁴ ×0.0983 (±10%)	0.001									
Total			36.750 (84)									
10141			0.23%									

Energy Calibration

PRC **60**, (1999) 055801

$$\frac{P_K(^{71}\text{Ge})}{P(^{55}\text{Fe})} = \frac{10.367}{5.895} [1 - (4.5G + 2.78)(V - V_{\text{crit1}}) \times 10^{-6}] ,$$

$$\frac{R_K(^{71}\text{Ge})}{R(^{55}\text{Fe})} = \sqrt{\frac{5.895}{10.367}} [1 + 1.5 \times 10^{-3}(V - V_{\text{crit2}})] ,$$

$$V_{\text{crit1}} = 10.5G + 0.6P + 588$$
 $V_{\text{crit2}} = 6G + P/3 + 824$

	⁵⁵ Fe					L-p	eak			K-peak					
Counter				I	Position Reso			$\operatorname{esoluti}$	on]	Position	osition		Resolution	
	Pos. (a.u.)	Resol. (%)	En non-linearity factor	Pred. from ⁵⁵ Fe	True	Ratio	Pred. from ⁵⁵ Fe	True	Ratio	Pred. from ⁵⁵ Fe	True	Ratio	Pred. from ⁵⁵ Fe	True	Ratio
sys2z															
YCN43	437.39	18.2	0.982	86.81	87.16	1.00	40.92	40.29	0.98	755.35	725.50	0.96	15.88	12.98	0.82
YCNA9	431.86	19.7	0.938	85.71	86.32	1.01	44.29	42.57	0.96	712.39	728.84	1.02	17.19	16.02	0.93
YCN41	442.80	18.0	0.967	87.88	87.00	0.99	40.40	37.24	0.92	753.01	732.49	0.97	15.68	13.34	0.85
YCN46	448.93	18.5	0.915	89.10	90.61	1.02	41.48	39.62	1.04	722.39	748.55	0.96	16.10	14.16	0.88
Mean sys2z						1.00			0.96			1.00			0.87
std						0.01			0.03			0.04			0.05
sys3															
YCN113	337.36	18.8	0.982	66.96	57.71	0.86	42.09	42.13	1.00	582.61	564.38	0.97	16.34	14.13	0.86
YCT92	334.67	18.9	0.964	66.42	56.72	0.85	42.40	41.88	0.99	567.37	563.97	0.99	16.46	13.90	0.84
YCT3	342.65	19.3	0.932	68.01	58.24	0.86	43.23	40.61	0.94	561.61	576.97	1.03	16.78	14.19	0.85
YCT2	337.00	18.8	0.982	66.89	57.77	0.86	42.24	41.62	0.99	581.98	563.33	0.97	16.40	14.05	0.86
YCT9	334.80	19.1	0.978	66.45	57.97	0.87	42.90	39.42	0.92	575.83	569.62	0.99	16.65	13.89	0.83
YCT97	332.81	18.6	0.932	66.05	57.11	0.86	41.64	38.75	0.93	545.48	559.25	1.03	16.16	13.51	0.84
Mean sys3						0.86			0.96			1.00			0.85
std						0.01			0.03			0.03			0.01

- Bi-weekly calibration with ⁵⁵Fe source, 5.9 keV.
- Calibration gain and resolution scaled to K/L peaks using an empirical formula adjusting for GeH₄ fraction (G) and pressure (P).
- Peak position & resolution verified by separate ⁷¹Ge measurements.

51Cr Source (JINST 16 (2021) P04012)

The Calorimeter

Figure 1. Hydraulic circuit of the mass flow calorimeter.

BNO INR RAS

Lead

chamber

Calorimeter

Source

2-zone gallium target

9/1/2022

BEST Extraction Procedure (PRC 60 (1999) 055801)

- ⁷¹Ge extraction (30 hours in *total*) :
- 1) Pump Ga from each zone to chemical reactors: inner zone \rightarrow 1 reactor, outer zone \rightarrow 6 reactors; (4.5 h).
- 2) In each reactor the germanium carrier, in the form of GeCl_4 , is extracted from the metal into aqueous phase by an oxidation reaction.
- 3) The aqueous solution is concentrated by evaporation. (16h)
- 4) The gas GeH₄ is synthesized, mixed with Xe, and placed into a proportional counter.
- 5) ⁷¹Ge decays are counted. (60 150 days)

Data Acquisition

- Two 8-channel systems
- Proportional counter (PC) contained within Nal well
- PC pulses digitized at 1GHz, 100 MHz bandwidth, 8 bit
- Risetime = 3.5 ns
- 0.37<E<15 keV

BNO INR RAS

⁵¹Cr (27.7 days)

747 keV v (81.6%)

752 keV v (8.5%)

427 keV v (9.0%)

432 keV v (0.9%)

320 keV y

⁵¹V (stable)

26 chrome metal disks Stainless steel 9/1/2022

Chromium disks from metallic ⁵⁰Cr enriched up to 97%. The enrichment was performed by the JSC "PA "Electrochemical Plant" (Zelenogorsk). These disks were irradiated for ~100 days with thermal neutrons in the SM-3 reactor (RIAR, Dmitrovgrad). Thermal neutron flux density -5×10^{15} neutrons /(cm² s)

4 kg 97%-enriched ⁵⁰Cr,

h = 4 mm, \emptyset 84 and 88 mm.

26 Cr metal disks

Gamma Ray Spectroscopy of Source

Measured nuclide impurities in the ⁵¹Cr source and their contribution to the source activity measurement at the reference time 14:02 on 05.07.2019

		L L D O	i ine i		
	Isotone Tuo	energy in	output	Activity	W,
	13010pc, 1 1/2	the line,	lines,	mCi	mW
		keV	%	mer	
1	¹³⁷ Cs, 30.05 y	662	85	8.5×(1±0.23)	0.06
2	⁹⁵ Zr, 64 d	724	11.1	60×(1±0.12)	2.1
		757	54.38		
3	⁹⁵ Nb, 35 d	766	99.8	87×(1±0.04)	
4	¹³⁴ Cs, 2.06 y	796	85.5	3.3×(1±0.18)	0.04
5	⁵⁸ Co, 70.85d	811	99.44	6.0×(1±0.27)	0.08
6	⁵⁴ Mn, 312 d	835	100	13×(1±0.05)	0.1
7	⁴⁶ Sc, 83.8 d	889	100	5.2×(1±0.10)	0.07
		1120	100		
8	⁵⁹ Fe, 44.5 d	1099	57	23×(1±0.07)	0.22
		1291	43.2		
9	⁶⁰ Co, 5.27 y	1173	100	6.6×(1±0.03)	0.11
		1332	100		
10	¹²⁴ Sb, 60.2 d	1690	47.5	5.8×(1±0.06)	0.1
		2091	5.5		
11	¹⁵⁴ Eu (?), 8.6 y	1274	34.9	0.86×(1±0.18)	0.01
		1595	1.8		
Σ					2.9

BNO INR RAS

From 11 spectrometric measurements of gamma radiation of the source,

- the total amount of heat release from impurity radionuclides is 2.9 ± 0.5 mW, which is ~4·10⁻⁶ of the initial ⁵¹Cr source power, and can be neglected; confirmation of a high purity of the material used to produce the ⁵¹Cr source

Measured Production Rates

K+L-peak							K+L-peak						
Extraction	Number of candidate events	Number fit to ⁷¹ Ge	⁵¹ Cr source production	Solar ν production	Carryover	⁷¹ Ge Production decay rate (atoms/day)	Extraction	Number of candidate events	Number fit to ⁷¹ Ge	⁵¹ Cr source production	Solar ν production	Carryover	⁷¹ Ge Production decay rate (atoms/day)
Inner-1	180	176.3	175.5	0.8	0.0	$49.4_{-4.2}^{+4.0}$	Outer-1	181	133.4	129.6	3.7	0.1	$41.1^{+5.2}_{-5.3}$
Inner-2	129	111.5	107.7	0.8	3.1	$44.9^{+5.6}_{-5.9}$	Outer-2	174	163.8	158.6	3.3	1.9	$63.6^{+5.5}_{-5.7}$
Inner-3	132	117.6	115.3	0.7	1.6	$62.9^{+7.1}_{-7.4}$	Outer-3	116	92.5	88.2	2.8	1.5	$51.4^{+6.9}_{-7.3}$
Inner-4	93	87.3	85.6	0.6	1.1	$73.3^{+8.0}_{-8.6}$	Outer-4	98	82.3	78.9	2.5	0.8	$66.6^{+9.2}_{-9.8}$
Inner-5	134	60.2	58.4	0.6	1.2	$49.8^{+7.7}_{-8.2}$	Outer-5	120	64.0	59.5	3.5	1.0	$46.9^{+7.2}_{-7.9}$
Inner-6	81	48.8	47.7	0.4	0.7	$69.5^{+11.0}_{-12.0}$	Outer-6	97	62.3	59.3	2.6	0.4	$87.3^{+12.3}_{-13.2}$
Inner-7	91	45.0	43.9	0.5	0.6	$64.6^{+11.6}_{-12.6}$	Outer-7	69	38.0	34.4	3.2	0.4	$50.4_{-10.6}^{+9.6}$
Inner-8	59	33.6	32.4	0.6	0.6	$53.8^{+11.0}_{-12.2}$	Outer-8	68	43.4	39.2	3.9	0.4	$59.7^{+10.8}_{-11.7}$
Inner-9	106	23.7	22.7	0.6	0.4	$49.9^{+14.9}_{-16.5}$	Outer-9	66	20.2	17.0	3.0	0.2	$43.0^{+13.5}_{-15.3}$
Inner-10	88	25.2	24.3	0.6	0.3	$69.1^{+17.3}_{-19.4}$	Outer-10	81	31.8	28.0	3.6	0.2	$78.8^{+18.1}_{-20.0}$
Comb. K+L	1093	724.0	708.2	6.1	9.7	$54.9^{+2.4}_{-2.5}$	Comb. $K+L$	1069	738.8	699.8	32.2	6.8	$55.6^{+2.6}_{-2.7}$

Minor contributions from solar neutrinos and by carry-over events (~2%)

Consistent with, but not Proof of, Oscillations

These results reaffirm the Ga anomaly, with higher statistical precision.

But no dependence on oscillation length was observed. So although the results are consistent with oscillations, there is no 'smoking gun' evidence that is not subject to caveats.

Because the rate in the two volumes is equally depressed, a number of potential explanations beyond oscillations have been considered. No clear alternative has been identified.

- Cross Section
- Source Strength
- Extraction Efficiencies
- Counting Efficiencies
- Average Path Length

$$P_{ee}(E_{\nu}, r) = 1 - \sin^2 2\theta \sin^2 \left(1.27 \frac{\Delta m^2 [\text{eV}^2] r[\text{m}]}{E_{\nu} [\text{MeV}]} \right)$$
$$R_j = \frac{n\sigma A}{4\pi} \int_{V_j} \frac{P_{ee}(r)}{r^2} d\vec{x} \approx V_0 \frac{1}{N} \sum_{i=1}^N \frac{P_{ee}(r)}{r^2} \Theta_j(\vec{x}_i)$$

BNO INR RAS

The Cross Section

- Bahcall estimated the ground state cross section by deriving the transition strength from the well-known ⁷¹Ge decay rate. (PRC 56 (1997) 3391)
 - The excited states (ES) were estimated from imprecise charge exchange measurements and found to be ~5%.
- Recently much better charge exchange measurements have become available. (PLB 706 (2011) 134, PLB 722 (2013) 233, PRC 91 (2015) 034608)
 - Show that the ES contribution is about 7%.
 - But, the Gamow-Teller and tensor contributions might cancel. (PLB 431 (1998) 110)
- New shell model calculations avoid the GT-tensor concern, but must reproduce other low energy characteristics. (PLB 795 (2019) 542)
 - This agreement is modest and not fully reassuring.
 - New shell model work is desirable.
- Bahcall's result is at the average of the two methods with an uncertainty that encompasses both, so BEST uses that value. 5.81x10⁻⁴⁵ cm²

Source Strength

- The activity measurement precision is best from calorimetry.
- This technique has been confirmed by other estimates building confidence. (PRC 59 (1999) 2246)
 - Direct counting of 320-keV line with Ge detector.
 - Reactor physics and neutron transport.
- Cr decay scheme.
 - The branching ratio to the 320-keV level is key for interpreting the activity of the source.
 - It is claimed to be known to ~0.1%, too small to explain 20% depression.

BNO INR RAS

Extraction Efficiencies (PRC 73 (2006) 045805)

- A variety of extraction efficiency tests have been done all consistent with experimental values. (PRC 60 (1999) 055801)
- ^{70,72}Ga radioactive isotopes produced by neutron activation were used for the carrier. Extraction of the Ge isotopes resulting from their decay was as expected. Tests question that atomic excitations during nuclear processes result in Ge ending up in un-extractable chemical form.
- ⁶⁸Ge produced cosmogenically when the Ga resided on surface was counted during many initial extractions. The reduction during these extractions followed the expected trend.
- A <u>sample of carrier doped with ⁷¹Ge</u> was produced and the measured extraction efficiency was as expected from the stable carrier determination.

Counting Efficiencies (PRC 60 (1999) 055801)

- Counter efficiencies were cross checked several ways.
- Volume efficiency checked with ³⁷Ar loaded counter gas
 - ⁴⁰Ca(n,α)³⁷Ar
 - Gas activity measured in a large counter (2.5 cm³) with high efficiency
 - Then used in experiment's counters to determine efficiency
- L- & K-Peak Efficiencies with ⁶⁹Ge and ⁷¹Ge loaded counter gas
 - ⁶⁹Ga(p,n)⁶⁹Ge
 - ⁶⁹GeH₄-Xe fill, measure Auger e⁻ and 1106keV γ ray. The relative rates of γ /e determines efficiency.
 - ⁷⁰Ge(n, y)⁷¹Ge
 - ⁷¹GeH₄-Xe fill, measure in both large and experimental counters

BNO INR RAS
Average Path Length and Geometry

$$R_{j} = \frac{n\sigma A}{4\pi} \int_{V_{j}} \frac{P_{ee}(r)}{r^{2}} d\vec{x} \approx V_{0} \frac{1}{N} \sum_{i=1}^{N} \frac{P_{ee}(r)}{r^{2}} \Theta_{j}(\vec{x}_{i})$$

Due to irregular geometry, calculated by Monte Carlo Integration. Verified by comparing calculated Ga masses to measured. Uncertainty estimated by varying geometry parameters. Uncertainty about 0.3%.

> $<L_{in}> = 52.03 \pm 0.18 \text{ cm}$ $<L_{out}> = 54.41 \pm 0.18 \text{ cm}$

These are the average path length of a neutrino through the Ga zone. It is <u>not</u> the oscillation length.

Fit Excluding First Extraction

A fit that excludes the first data point does not change the qualitative conclusion although the statistical significance is decreased.

Source Activity – ⁵¹Cr Branching Ratio Uncertainty

The calorimetry heat measurement relies on the branching ratio of the 320-keV Cr emission to normalize to activity. If the branching value is in error, so would be the source strength. But the BR is claimed to be known to a precision much smaller than our result, 0.1%. Even so, would not explain Ar result.

ENDF data

E(decay)	E(level)	$I\varepsilon^{\dagger\ddagger}$	Log ft	Comments	427 keV V (9.0%) 432 keV v (0.9%) 75	7 keV v (81.6% 52 keV v (8.5%)
(432.37 <i>21</i>)	320.0835	9.930 <i>10</i>	5.8631 7	ε K=0.8910; ε L=0.09347; ε M+=0.01556	320 keV γ	
(752.45 <i>21</i>)	0.0	90.070 <i>10</i>	5.3910 3	ε K=0.8919; ε L=0.09268; ε M+=0.01541	⁵¹ V (stable)	

Specific Results

Ref	branch	method
NIM A 339 (1994) 20	0.0990(8)	Nal – absolute activity ???
NIM A 339 (1994) 20	0.1008(11)	Ge – absolute activity ???
Applied Radiation and Isotopes 68 (2010) 596	0.0987(3)	Beta-gamma coincidence (Ge-based)
Applied Radiation and Isotopes 62 (2005) 63	0.099(1)	Si(Li) with fixed activity

⁵¹Cr (27.7 days)

Cross Section – Energy of ⁵¹Cr Neutrinos

- Cross section scales approximately as neutrino energy squared.
- Q value is well known: 0.1%. So no more than about 0.2% on cross section
- The energies of the emitted neutrinos are taken from the decay Q value and specific K/L shell energies.
- A full calculation of the final atomic state should be pursued. If the shell is altered during the decay, the energy of that state will not be shared with the neutrino.
- Maybe a keV decrease in neutrino energy...
 - 1 keV out of 750 is about 1.3%, cross section might decrease by maybe 2.5%.
 - Too small to explain difference.
- Would have to do similar calculation for Ar.

Cross Section – Electron Density at the Nucleus Concern raised by RGH Robertson

- The ground state cross section for ⁷¹Ga-> ⁷¹Ge is derived from the decay rate of ⁷¹Ge.
- The decay rate is proportional to |M|²|ψ(0)|², where ψ(0) is the electron density at the nucleus. If the theoretical ψ(0) is estimated high, the cross section would be underestimated.
- The cross section, however, only needs the matrix element $|M|^2$.
- Hence a calculation of $\psi(0)$ is used to convert the decay rate to a cross section.
- Experimental tests of $\psi(0)$ measure the ratio of electron capture to positron decay.
 - For ²²Na, measurement is ±1%, but disagrees with theory by 6%. (Appl. Rad. Iso. 134 (2018) 225)
 - But theory is high wrt experiment, so effect seems to be in wrong direction to be an explanation.
 - Need a better experimental test, and hopefully with A near 71 (⁶⁸Ga?)
 - Will need complementary calculations.

Cross Section – Electron Density at the Nucleus Concern raised by RGH Robertson

 The ground state cross section for ⁷¹Ga-> ⁷¹Ge is derived from the decay rate of ⁷¹Ge and the electron density at the nucleus

 $\sigma_0 = \frac{1.2429 \times 10^{-47} \text{ cm}^2}{\Sigma_i q_i^2 g_i^2}$

q_i: E_{threshold}-E_{binding,i} g_i²: square of the radial wavefunction [PRC **56**, 3391 (1997)]

Rev. Mod. Phys. 49,1 (1977)

- For this calculation, g_i^2 is only calculated, not measured
- Experimental tests of $g_i{}^2$ measure the ratio of electron capture to positron decay (EC/ $\beta+$)
 - $P_{EC}/P_{\beta+} = (P_{K}+P_{L})/P_{\beta+} = P_{K}/P_{\beta+} (1+P_{L}/P_{K})$
 - σ(P_L/P_K)~ ±3%, σ(P_K)~ ±5%
 - $(EC/\beta+)_{theory}$ systematically *higher* than $(EC/\beta+)_{exp.}$ (see figure on the right).
 - For most nuclides, effect is in the opposite direction to the Ga anomaly
 - For ²²Na, measurement is ±1%, but disagrees with theory by 5%. (Appl. Rad. Iso. 134 (2018) 225)
 - Need a better experimental test, and hopefully with A near 71 (68Ga?)
 - Will need complementary calculations.

EC/β+ Ratio Near A=71 Rev. Mod. Phys. 49,1 (1977)

Nuclide	Z	Α	K/β+ Theory	K/β+ Exp.	Ratio (Exp./Theory)	Ref.
Zn	30	65	30.5±0.4	27.7±1.5	0.908	Hammer (1968)
Ga	31	68	1.36 ± 0.03	1.28±0.12	0.941	Ramaswamy (1959)

Nuclide	Z	Α	EC/β+ Theory	EC/β+ Exp.	Ratio (Exp./Theory)	Ref.
Zn	30	65	34.5±0.04	24.9±1.5	0.722	Sehr (1954)
Na*		22	0.1143 ± 0.001	0.1083 ± 0.009	0.948	Mougeot (2018)

* Included here as it is the most studied nuclide for EC/ β + Ratio

Wilk's Theorem in Question

- In our analysis for the oscillation parameters, the test statistic is assumed to be χ^2 distributed (Wilk's theorem)
- However, Wilk's theorem is in doubt when: EPJ.C 80, 750 (2020), EPJ.C 81, 2 (2021)
 - The population of likelihood function occurs near the parameter space edge
 - Physical bound at $\sin^2 2\theta \ge 0$
 - There is a degeneracy in parameter space
 - Δm^2 becomes undefined when $\sin^2 2\theta \rightarrow 0$
 - $\sin^2 2\theta$ becomes unphysical when $\Delta m^2 \rightarrow 0$

The test statistic *a priori* significantly deviates from a χ^2 distribution

- Neutrino-4 significance reduces 3.2 $\sigma \rightarrow$ 2.6 σ when full Monte Carlo calculation is done
- BEST may observe similar effect
 - However, the best fit is further from the borders, so impact might be less
- Other analysis methods may be considered: CLs method, FC method, etc.

