

CKM measurements at LHCb

Halime Sazak

on behalf of the LHCb collaboration

CIPANP 2022 August 29th – September 4th

Contents

LHCb Experiment at CERN Data recorded: 2022-07-05 14:44:16 GMT

The LHCb Experiment

- Physics motivation CKM matrix and Unitarity Conditions
- Analysis
 - CKM angle γ in $B^{\pm} \rightarrow D K^{\pm}$ with $D \rightarrow K^{\mp} \pi^{\pm} \pi^{\pm} \pi^{\mp}$
 - Constraints on the CKM γ from $B^{\pm} \rightarrow D(h^{\pm}h'^{\mp}\pi^{0})h^{\pm}$ decays
 - Simultaneous determination of CKM angle γ and charm mixing parameters

 - Precise determination of the $B_s^0 \overline{B}_s^o$ oscillation frequency
- Conclusions

First Observation of the decay $B_s^0 \to K^- \mu^+ v_\mu$ and a measurement of $|V_{ub}|/|V_{cb}|$

LHCb: Large Hadron Collider Beauty Experiment

- A single-arm forward spectrometer covering the pseudo-rapidity range $2 < \eta < 5$
- Precise vertexing, tracking, particle identification and reconstruction

Precision measurements of particles containing b and c quarks mainly produced in the forward direction at LHC

 $3\pi/4$

ππ

Physics motivation: CKM matrix and Unitarity Conditions

The rates of the decay processes are parametrized in different ways by CKM matrix elements

$$\boldsymbol{V}_{\boldsymbol{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

- Overconstraint the CKM elements precisely is one of the key goal of the Flavour Physics
 - 4 parameters: A, λ , ρ , η
 - 3 angles
 - 1 complex phase

Parameters are obtained and tested wrt data (rich pheno and large mass range): Nucleons, K, D, B_(s) and top quark physics

Unitarity triangle in the $(\bar{\rho}, \bar{\eta})$ complex plane

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

In order to verify the unitarity of the CKM matrix

Complex phase $\gamma = \arg(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*})$ which is source of CP violation can be measured from the processes mediated

- Only angle accessible at Tree-level (direct measurement)
 - theoretically clean
 - "Standard Candle" of the Standard Model
 - Interference between $b \rightarrow c$ and $b \rightarrow u$ quark transitions
- Precise measurements of the magnitudes of the CKM matrix elements : mixing, branching fractions
- Sub-degree level of measurements to be compared with the CKMfitter global fit to challenge the Standard Model
- Loop-level (indirect measurement) sensitive to New Physics (NP)

CIPANP 2022 HS-LPC

Physics motivation : Unitarity triangle

- Discrepancy between these will indicate "New Physics"
- Many different channels used to measure the angles and sides of the triangle

(Pure SM like)

(Possible sensitivity to NP)

- in the tree level
- Analysis based on Run1+Run2 data sample corresponding to an integrated luminosity of $9fb^{-1}$

NEW preliminary LHCb-PAPER- 2022-017

Sensitivity to γ determined by the interference between favoured b \rightarrow c and suppressed b \rightarrow u quark transitions

- **space in** $B^- \to DK^-, D \to K^+\pi^-\pi^-\pi^+''$ by T. Evans, J. Libby, S. Malde and G. Wilkinson [Physics Letters B, 802 (2020)]
- CKM angle \mathbf{y} (The coherence factor R_{D} is larger in bins 2 and 3 and less diluted)

First use of this approach, based on a four bins choice

This analysis based on the study " Improved sensitivity to the phase y through binning phase

• A binning scheme is proposed in the phase space of $D^0 \to K^+ \pi^- \pi^- \pi^+$ to maximise the sensitivity to

	_	
		_
		_
		_
		_
		_
	_	_
		_
		_
	_	_
		_
-		
Λ		_
4		
		_
		-
		_
	-	-
1		

• The measurement for $D \to K^{\mp} \pi^{\pm} \pi^{\pm} \pi^{\mp}$ decay mode in four bins of D-decay phase space

Bin	Limits $(\tilde{\delta}_{K3\pi})$	$R^i_{K3\pi}$	$\delta^i_{K3\pi}$
1	$-180^{\circ} < \tilde{\delta}_{K3\pi} \leq - 39^{\circ}$	$0.66{}^{+0.18}_{-0.21}$	$\left(117{}^{+14}_{-19} ight)^{\circ}$
2	$-39^{\circ} < \tilde{\delta}_{K3\pi} \leq 0^{\circ}$	$0.85{}^{+0.14}_{-0.21}$	$\left(145{}^{+23}_{-14} ight)^{\circ}$
3	$0^{\circ} < \tilde{\delta}_{K3\pi} \le 43^{\circ}$	$0.78{}^{+0.12}_{-0.12}$	$\left(160\ {}^{+\ 19}_{-\ 20} ight)^{\circ}$
4	$43^{\circ} < \tilde{\delta}_{K3\pi} \leq 180^{\circ}$	$0.25{}^{+0.16}_{-0.25}$	$\left(288{}^{+15}_{-29} ight)^{\circ}$

D decay hadronic parameters from CLEO-C, BESIII ([JHEP05 (2021) 164])

- One of the most precise measurement by a single charm D meson decay mode
- Large difference between the invariant mass of charged B^+ and B⁻ hadrons designate CP asymmetry

Largest \mathcal{A}_{CP} ~ 85% !

NEW preliminary LHCb-PAPER- 2022-017

$$\pi^{\pm}\pi^{\mp}$$

• $D \to K^{+}\pi^{\pm}\pi^{\pm}\pi^{\mp}$ decay provides a important contribution to the CKM angle γ combination: (best sensitivity from $D \rightarrow K_s^0 \pi^+ \pi^-$ [JHEP02 (2021) 169]

- High branching fraction
- Absence of neutral pions

Confidence intervals for γ vs B-hadronic parameters in the cartesian parameterisation (x_K, y_K) and (x_π, y_π)

B-hadronic parameters:

$$r_B^2 = x^2 + y^2$$

$$r_B = (94.6^{+3.1+0.5+3.0}_{-3.1-0.5-2.3}) \times 10^{-3}$$

•
$$\delta_B = (134.6^{+6.0+0.7+8.6}_{-6.0-0.7-8.7})^{\circ}$$

The CKM angle γ is measured to be

$$\gamma = (54.8^{+6.0+0.6+6.7}_{-5.8-0.6-4.3})^{\circ}$$

 \succ compatible with the measurements from [Eur. Phys. J. C (2021) 81: 226], [JHEP12 (2021) 141]

$$\gamma = (65.4^{+3.8}_{-4.2})^{\circ}$$

This result will reduce the uncertainty on the CKM angle γ combination with measurements from B and D decays

- Analysis based on Run1+Run2 data sample corresponding to an integrated luminosity of $9fb^{-1}$
- h can be either kaon or pion

LHCb-PAPER-2021-036

CIPANP 2022 HS-LPC

First observation of $B^- \rightarrow [\pi^- K^+ \pi^0] K^-$ suppressed mode with a significance of **7.8**σ!

Evidence of a large CP asymmetry !

$$A_{ADS(K)} = -0.38 \pm 0.12 \pm 0.02$$

LHCb-PAPER-2021-036

B candidates $B^{\mp} \rightarrow DK^{\mp}$ and $B^{\mp} \rightarrow D\pi^{\mp}$, where charm meson reconstructed in quasi-GLW and ADS method:

- Measurement of 11 CP violation observables with world best precision
- Signal yields from each decay modes used in the analysis:

Mode	Yield
$B^{\pm} \rightarrow [K^{\pm}K^{\mp}\pi^0]_D\pi^{\pm}$	4026 ± 77
$B^{\pm} \rightarrow [\pi^{\pm}\pi^{\mp}\pi^0]_D \pi^{\pm}$	14180 ± 140
$B^{\pm} \rightarrow [K^{\pm}\pi^{\mp}\pi^0]_D \pi^{\pm}$	140696 ± 589
$B^{\pm} \rightarrow [\pi^{\pm} K^{\mp} \pi^0]_D \pi^{\pm}$	293 ± 27
$B^{\pm} \rightarrow [K^{\pm}K^{\mp}\pi^0]_D K^{\pm}$	401 ± 29
$B^{\pm} \rightarrow [\pi^{\pm}\pi^{\mp}\pi^0]_D K^{\pm}$	1189 ± 51
$B^{\pm} \rightarrow [K^{\pm}\pi^{\mp}\pi^0]_D K^{\pm}$	12265 ± 158
$B^{\pm} \rightarrow [\pi^{\pm} K^{\mp} \pi^0]_D K^{\pm}$	155 ± 19

- Confidence regions of the strong phase vs the CKM angle γ
- Results interpreted in terms of:

• $\gamma = (56^{+24}_{-19})^{\circ}$

- $\delta_B = (122^{+19}_{-23})^{\circ}$
- $r_B = (9.3^{+1.0}_{-0.9})^{\circ} \times 10^{-2}$

 \succ Consistent with the LHCb γ combination! [JHEP12 (2021) 141]

LHCb-PAPER-2021-036

—	1.021	\pm	0.079	\pm	0.005
—	0.902	\pm	0.041	\pm	0.004
—	-0.024	\pm	0.013	\pm	0.002
—	0.067	\pm	0.073	\pm	0.003
—	0.109	\pm	0.043	\pm	0.003
—	-0.001	\pm	0.019	\pm	0.002
—	0.001	\pm	0.010	\pm	0.002
—	0.0179	\pm	0.0024	\pm	0.000
—	0.0085	\pm	0.0020	\pm	0.000
—	0.00188	\pm	0.00027	\pm	0.000
—	0.00227	\pm	0.00028	\pm	0.000
		= 1.021 $= 0.902$ $= -0.024$ $= 0.067$ $= 0.109$ $= -0.001$ $= 0.001$ $= 0.0179$ $= 0.0085$ $= 0.00188$ $= 0.00227$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

CIPANP 2022 HS-LPC

 $\mathbf{004}$

Simultaneous determination of CKM angle γ and charm mixing parameters

Measurements are performed from beauty and cha parameters.

CIPANP 2022 HS-LPC

JHEP12 (2021) 141

Measurements are performed from beauty and charm sectors which are sensitive to γ and charm mixing

Combination of CKM γ and charm mixing parameters

Inputs from beauty sector

B decay	D decay	Dataset
		Opa
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^+ h^-$	Run 1&2
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	$\operatorname{Run} 1$
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^+ h^- \pi^0$	Run 1
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow K^0_s h^+ h^-$	$\operatorname{Run}1\&2$
$B^{\pm} \rightarrow Dh^{\pm}$	$D o K^0_s K^\pm \pi^\mp$	$\operatorname{Run}1\&2$
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \rightarrow h^+ h^-$	$\operatorname{Run}1\&2$
$B^{\pm} \rightarrow DK^{*\pm}$	$D \rightarrow h^+ h^-$	Run 1&2 (2015-2016)
$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow h^+ \pi^- \pi^+ \pi^-$	Run 1&2 (2015-2016)
$B^{\pm} \rightarrow D h^{\pm} \pi^{+} \pi^{-}$	$D \rightarrow h^+ h^-$	Run 1
$B^0 \to DK^{*0}$	$D \rightarrow h^+ h^-$	Run 1&2 (2015-2016)
$B^0 \to DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$	Run 1&2 (2015-2016)
$B^0 \to DK^{*0}$	$D \to K_s^0 \pi^+ \pi^-$	Run 1
$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \to K^- \pi^+ \pi^+$	Run 1
$B^0_s \to D^{\mp}_s K^{\pm}$	$D_s^+ ightarrow h^+ h^- \pi^+$	Run 1
$B_s^0 \rightarrow D_s^{\mp} K^{\pm} \pi^+ \pi^-$	$D_s^+ \rightarrow h^+ h^- \pi^+$	Run $1\&2$

ated & New

- Combination of measurements sensitive to CKM angle y performed
- 151 observables to determine 52 free parameters with all frequentist treatment

Inputs from charm sector

New

D decay	Observable(s)	Dataset
$D^0 ightarrow h^+ h^-$	ΔA_{CP}	Run 1&2
$D^0 ightarrow h^+ h^-$	y_{CP}	Run 1
$D^0 ightarrow h^+ h^-$	ΔY	$\operatorname{Run}1\&2$
$D^0 \to K^+ \pi^-$ (Single Tag)	$R^{\pm},(x^{'\pm}),y^{'\pm}$	Run 1
$D^0 \to K^+ \pi^-$ (Double Tag)	$R^{\pm},(x^{'\pm}),y^{'\pm}$	Run 1&2 (2015-2016)
$D^0 \to K^\pm \pi^\mp \pi^+ \pi^-$	$(x^2 + y^2)/4$	Run 1
$D^0 ightarrow K^0_s \pi^+ \pi^-$	x,y	Run 1
$D^0 \to K^0_s \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	Run 1&2

CIPANP 2022 HS-LPC

<u>Combination of CKM γ and charm mixing parameters</u>

- Most precise determination of γ from a single experiment, Belle-II experiment is coming on stage
- Different *B* modes agree at 2σ level
- Combination of Unitarity Triangle angle γ measurements of the LHCb with excellent agreement with the global fit results:

New average :

 $\gamma = (65.4^{+3.8}_{-4.2})^{\circ}$ (direct measurement)

- $B_s^0 \rightarrow D_s^{\mp} K^{\pm}(\pi \pi)$ analysis used Run 1 & Run 2 [<u>LHCb-CONF-2020-003</u>]
 - constraint on $\gamma \sim 20^{\circ}$ level of precision and the most probable value seems to be high wrt the *B*⁺ and *B*⁰ measurements
- Coherence with

 $\gamma = (65.6^{+0.9}_{-2.7})^{\circ}$

 $\gamma = (65.8 \pm 2.2)^{\circ}$ (UT fit, Bayesian)

- (CKM fitter, frequentist)
- Compatible with previous LHCb combination:

 $\gamma = (74^{+5.0}_{-5.8})^{\circ}$ [LHCb-CONF-2018-002]

03/09/2022

JHEP12 (2021) 141

Combination of CKM γ and <u>charm mixing parameters</u>

Most precise charm mixing parameters determined by combining for the first time

•
$$x \equiv \frac{\Delta M}{\Gamma} = (0.400^{+0.052}_{-0.053})\%$$
 $y \equiv \frac{\Delta \Gamma}{2\Gamma} = (0.630^{+0.033}_{-0.030})\%$

 \blacktriangleright Precision improved by a factor of 2 in y!

• World average:
$$x \equiv \frac{\Delta M}{\Gamma} = (0.409^{+0.048}_{-0.049})\%$$
 $y \equiv \frac{\Delta \Gamma}{2\Gamma} = (0.409^{+0.048}_{-0.049})\%$

JHEP12 (2021) 141

•
$$\left|\frac{q}{p}\right| = 0.997 \pm 0.016$$
 $\phi = (-2.4 \pm 1.2)^{\circ}$

See the talk Fred Blanc@ICHEP22 Bologna (recent improvements on charm mixing) •

 $0.615^{+0.056}_{-0.055})\%$

First Observation of the decay $B_s^0 o K^- \mu^+ v_\mu$ and a measurement of $|V_{ub}|/|V_{cb}|$

Analysis uses 2012 data sample corresponding to an integrated luminosity of 2 fb⁻¹ @8 TeV

CIPANP 2022. HS-LPC

PRL 126, 081804 (2021)

 $|V_{ub}|/|V_{cb}|$ is measured through the relation of the ratio of BF of B normalization channels

$$R_{BF} \equiv \frac{\mathcal{B}(B_{S}^{0} \to K^{-} \mu^{+} v_{\mu})}{\mathcal{B}(B_{S}^{0} \to D_{S}^{-} \mu^{+} v_{\mu})} = \frac{N(B_{S}^{0} \to K^{-} \mu^{+} v_{\mu})}{N(B_{S}^{0} \to D_{S}^{-} \mu^{+} v_{\mu})} \frac{\epsilon(D_{S}^{-})}{\epsilon(K^{-})} \times \frac{\mathcal{B}(D_{S}^{-} \to K^{-} K^{+} \pi^{+} \pi^{+} \mu^{+})}{PDG}$$

Binned maximum-likelihood fit m_{corr} of the B_s^0 to obtain the signal and normalization yield

$$m_{corr}$$
 defined as : $m_{corr} = \sqrt{m_{(X\mu)}^2 + \frac{p_{\perp}^2}{c^2}} + p_{\perp}/c$

- Signal in two regions of q^2 :
- > 7 [PRD 100, 034501 (2019)](LQCD)
- < 7 [JHEP 08,112 (2017)] (LCSR)
- ▶ V_{cb} by normalization channel $B_s^0 \rightarrow D_s^- \mu^+ v_\mu$ modelled by LQCD [Phys Rev D. 101 074513]
- \square q^2 is reconstructed up to twofold ambiguity using vertex and Λ_h^0 const [JHEP 02, 021 (2017)]

FF:form factor ϵ : efficiency LCSR: light cone sum rule LQCD: lattice Quantum Chromodynamics

$$B_s^0 \to K^- \mu^+ v_\mu$$
 signal and $B_s^0 \to D_s^- \mu^+ v_\mu$

 $\tau^{-}) = \frac{|V_{ub}|^2}{|V_{cb}|^2} \times \frac{FF_K}{FF_{D_c}}$ Theory input

First Observation of the decay $B_s^0 \to K^- \mu^+ v_\mu$ and a measurement of $|V_{ub}|/|V_{cb}|$

First observation of suppressed semileptonic $B_s^0 \to K^- \mu^+ v_\mu$ decay and the ratio branching fraction measured: $\square \mathcal{B}(B_s^0 \to K^- \mu^+ v_\mu) = [1.06 \pm 0.05(stat) \pm 0.08(syst)] \times 10^{-4}$ The ratio $|V_{ub}|/|V_{cb}|$ is obtained in two q^2 regions : $|V_{ub}|/|V_{cb}|(high) = 0.0946 \pm 0.0030(stat)^{+0.0024}_{-0.0025}(syst) \pm 0.001$

• Discrepancy between the $|V_{ub}|/|V_{cb}|$ values is related to the difference in theoretical calculations of the FF

03/09/2022

PRL 126, 081804 (2021)

$$008(D_s) \pm 0.0030(FF)$$

$$R_{BF} = \frac{|V_{ub}|^2}{|V_{cb}|^2} \times \frac{FF_K}{FF_{D_s}}$$

$$13(D_s) \pm 0.0068(FF)$$

Precise determination of the $B_s^0 - \overline{B}_s^o$ oscillation frequency Δm_s

- This analysis uses the full Run 2 data sample corresponding to an integrated luminosity of 6 fb⁻¹
- B_s^0 mesons can oscillate to its anti-particle $\overline{B}_s^o \sim 3 \times 10^{12}$ per second

Nature Physics 18, (2022) 1-5

Precise determination of the $B_s^0 - \overline{B}_s^o$ oscillation frequency

 \succ Time-dependent analysis of $B_s^0 \rightarrow D_s^- \pi^+$

• Most precise result of the $\Delta m_s = m_H - m_L$ (heavy (H) and light (L) mass eigenstates) oscillation frequency :

 $\Delta m_s = 17.7683 \pm 0.0051(stat) \pm 0.0032(syst)ps^{-1}$

 \succ Current Δm_s precision improved by a factor of 2!

Fit to the $B_s^0 \rightarrow D_s^- \pi^+$ decay time distribution :

$$P(t) \approx e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + C\cos(\Delta m_s t) \right]$$

The asymmetry distribution between the tagged-unmixed and taggedmixed samples is defined as:

$$A(t) = \frac{N(B_s^0 \to D_s^- \pi^+, t) - N(\bar{B}_s^0 \to D_s^- \pi^+, t)}{N(B_s^0 \to D_s^- \pi^+, t) + N(\bar{B}_s^0 \to D_s^- \pi^+, t)}$$

Nature Physics 18, (2022) 1-5

$\succ \Delta m_s$

- Precise oscillation frequency measurement by LHCb
- Combined result from all LHCb measurements using Run 1 & Run 2 data: $\Delta m_s = 17.7656 \pm 0.0057 \text{ ps}^{-1}$
- The result is compatible with SM prediction:

\succ History of Δm_s

$$\Delta m_s = 17.7683 \pm 0.0051 \pm 0.0032 \text{ps}^{-1}$$

 $\Delta m_s = 18.4^{+0.7}_{-1.2} \text{ps}^{-1}$

[JHEP 12 (2019) 009]

- LHCb shows great success at flavor physics program with Run 1 and Run 2
- Largest CP violation observed ~ 85% by a single charm decay mode $B^{\pm} \rightarrow D K^{\pm}$, $D \rightarrow K^{\mp} \pi^{\pm} \pi^{\pm} \pi^{\mp} \pi^{$
- First observation of $B^{\pm} \rightarrow [\pi^{\pm}K^{\mp}\pi^{0}]K^{\pm}$ with a significance of 7.8 σ
- \mathbf{v} combination with a best sensitivity to date by a single experiment
- First observation of the $B_s^0 \to K^- \mu^+ v_\mu$ decay and measure $|V_{ub}|/|V_{cb}|$ in two q^2 regions
- Most precise determination of $B_s^0 \overline{B}_s^0$ oscillation frequency Δm_s in of $B_s^0 \to D_s^- \pi^+$ with full Run 2 data
- With Run 3 and Run 4, LHCb expect to collect 50 fb⁻¹ data
- LHCb aims more precise measurements with increased data samples and higher collision energy

Stay Tuned !

448b

LHCb Experiment at CERN Run / Event: 236189 / 3032040187 Data recorded: 2022-07-05 14:44:16 GMT

Thank you for your attention!

BACKUP SLIDES

03/09/2022

LHCb: Large Hadron Collider Beauty Experiment

- Identification: $\varepsilon(h \to h) \sim 90\%$, miss $\varepsilon(h \to h) \sim 5\%$, $\varepsilon_{\mu} \sim 97\%$
- IP resolution: $\sigma_{IP} = 20 \mu m$
- Momentum resolution: $\frac{\Delta p}{n} = 0.5 0.8\%$
- Mass resolution: $\sigma(m_{B \to hh}) \approx 22 MeV$
- Time resolution:45-55 *fs*

By W. Krupa @BEACH 2022

CIPANP 2022 HS-LPC

Physics motivation : measurement of CKM Unitarity

	HFLAV [1]	CKMfitter [2]	UTfit [3]
α [°]	85.2 +4.8 -4.3	91.9 ^{+1.6} -1.2	90.1 ± 2.2
β [°]	22.2 ± 0.7	23.41 ^{+1.53} -0.68	23.8 ± 1.3
γ[°]	66.2 ^{+3.4} -3.6	65.5 ^{+1.1} -2.7	65.8 ± 2.2
¢ ₅ [rad]	-0.050 ± 0.019	-0.03682 +0.00060 -0.00086	-0.0370 ± 0.00

CKM status over the years

1995

03/09/2022

2004

 Δm_d

Δm_d & Δm_e

1.5

2.0

• Confidence intervals and best-fit values for γ when splitting the combination inputs by initial B meson species

Species	Value [0]	$68.3\%~\mathrm{CL}$		$95.4\%~\mathrm{CL}$	
species	value	Uncertainty	Interval	Uncertainty	Interval
B^+	61.7	$^{+4.4}_{-4.8}$	[56.9, 66.1]	$^{+8.6}_{-9.5}$	[52.2, 70.3]
B^0	82.0	$^{+8.1}_{-8.8}$	[73.2, 90.1]	$^{+17}_{-18}$	[64, 99]
B^0_s	79	$^{+21}_{-24}$	[55,100]	$^{+51}_{-47}$	[32, 130]

• Confidence intervals and best-fit values for γ when splitting the combination inputs by time-dependent and time-integrated methods

Mothod	Value [9]	68.3%	CL	95.4% CL	
Method	varue	Uncertainty	Interval	Uncertainty	Interval
Time-dependent	79	$^{+21}_{-24}$	[55, 100]	$^{+51}_{-47}$	[32, 130]
Time-integrated	64.9	$^{+3.9}_{-4.5}$	[60.4, 68.8]	$^{+7.8}_{-9.6}$	[55.3, 72.7]

Combination of CKM γ and charm mixing parameters

Decay	Parameters	Source	Ref.	Status since
				Ref. [17]
$B^{\pm} \rightarrow DK^{*\pm}$	$\kappa_{B^{\pm}}^{DK^{*\pm}}$	LHCb	[24]	As before
$B^0 \to DK^{*0}$	$\kappa_{B^0}^{DK^{*0}}$	LHCb	[45]	As before
$B^0 \to D^{\mp} \pi^{\pm}$	β	HFLAV	[11]	Updated
$B^0_s \to D^\mp_s K^\pm(\pi\pi)$	ϕ_s	HFLAV	[11]	Updated
$D \to h^+ h^- \pi^0$	$F^+_{\pi\pi\pi^0}, F^+_{K\pi\pi^0}$	CLEO-c	[46]	As before
$D \to \pi^+\pi^-\pi^+\pi^-$	$F_{4\pi}^+$	CLEO-c	[46]	As before
$D \to K^+ \pi^- \pi^0$	$r_D^{K\pi\pi^0}, \delta_D^{K\pi\pi^0}, \kappa_D^{K\pi\pi^0}$	CLEO-c+LHCb+BESIII	[47-49]	Updated
$D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	$r_D^{K3\pi},\delta_D^{K3\pi},\kappa_D^{K3\pi}$	CLEO-c+LHCb+BESIII	[41, 47-49]	Updated
$D \to K^0_{\rm S} K^{\pm} \pi^{\mp}$	$r_D^{K^0_{\mathrm{S}}K\pi},\delta_D^{K^0_{\mathrm{S}}K\pi},\kappa_D^{K^0_{\mathrm{S}}K\pi}$	CLEO	[50]	As before
$D \to K^0_{\rm S} K^{\pm} \pi^{\mp}$	$r_D^{K^0_{\mathrm{S}}K\pi}$	LHCb	[51]	As before

@ICHEP by Tim Evans

Table 3: Correlation matrix of γ with the *B*-hadronic parameters, expressed in the Cartesian

		γ	x_{DK}	y_{DK}	$x_{D\pi}$	$y_{D\pi}$
γ	1		-0.286	-0.305	-0.196	0.047
x_{DK}			1	0.911	-0.118	-0.211
y_{DK}				1	-0.076	-0.173
$x_{D\pi}$					1	0.357
$y_{D\pi}$						1

Hadronic parameters in the cartesian form

$$\begin{aligned} x_{DK} &= \left(-66.4 \begin{array}{c} +7.6 \\ -7.2 \\ -7.2 \\ -0.9 \\ -7.3 \end{array}\right) \times 10^{-3}, \\ y_{DK} &= \left(\begin{array}{c} 67.4 \\ +7.1 \\ -7.5 \\ -1.0 \\ -12.1 \end{array}\right) \times 10^{-3}, \\ x_{D\pi} &= \left(\begin{array}{c} 3.0 \\ +1.2 \\ -1.2 \\ -0.1 \\ -0.9 \\ -0.1 \\ -0.9 \\ -0.8 \\ -0$$

11 observables are reported

$R^{KK\pi^0}$	=	1.021	\pm	0.079	\pm	0.005
$R^{\pi\pi\pi^0}$	=	0.902	\pm	0.041	\pm	0.004
$A_K^{K\pi\pi^0}$	=	-0.024	\pm	0.013	\pm	0.002
$A_K^{KK\pi^0}$	=	0.067	\pm	0.073	\pm	0.003
$A_K^{\pi\pi\pi^0}$	=	0.109	\pm	0.043	\pm	0.003
$A_\pi^{KK\pi^0}$	=	-0.001	\pm	0.019	\pm	0.002
$A_\pi^{\pi\pi\pi^0}$	=	0.001	\pm	0.010	\pm	0.002
R_K^+	=	0.0179	\pm	0.0024	\pm	0.0003
R_K^-	=	0.0085	\pm	0.0020	\pm	0.0004
R_π^+	=	0.00188	\pm	0.00027	\pm	0.00005
R_{π}^{-}	=	0.00227	\pm	0.00028	\pm	0.00004

LHCb-PAPER-2021-036

B candidates $B^{\mp} \rightarrow DK^{\mp}$ and $B^{\mp} \rightarrow D\pi^{\mp}$, where charm meson reconstructed in quasi-GLW and ADS method:

$$D \rightarrow \pi^{+}\pi^{-}\pi^{0}$$

$$D \rightarrow K^{+}K^{-}\pi^{0}$$

$$D \rightarrow K^{+}\pi^{-}\pi^{0}$$

$$D \rightarrow \pi^{+}K^{-}\pi^{0} (suppressed)$$

 \rightarrow First determination of the CP content of $D \rightarrow \pi^+ \pi^- \pi^0$ and $D \rightarrow K^+ K^- \pi^0$

Analysis by M. Nayaka, J. Libbya, *, S. Maldeb, C. Thomasb, G. Wilkinsonb, c, R. A. Briered, P. Naike, T. Gershonf, G. Bonvicinig

Systematic uncertainties are summarized in the table

Uncertainty	All q^2	Low q^2	High q
Tracking	2.0	2.0	2.0
Trigger	1.4	1.2	1.6
Particle identification	1.0	1.0	1.0
$\sigma(m_{\rm corr})$	0.5	0.5	0.5
Isolation	0.2	0.2	0.2
Charged BDT	0.6	0.6	0.6
Neutral BDT	1.1	1.1	1.1
q^2 migration		2.0	2.0
Efficiency	1.2	1.6	1.6
Fit template	+2.3	+1.8	+3.0
Total	-2.9 + 4.0 - 4.3	-2.4 + 4.3 - 4.5	-5.4 + 5.0 - 5.3

TABLE I. Relative systematic uncertainties on the ratio $\mathcal{B}(B_s^0 \to K^- \mu^+ \nu_\mu) / \mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_\mu)$, in percent.

2

_

CIPANP 2022 HS-LPC

Systematic uncertainties

Description Reconstruction effects: momentum scale uncertainty detector length scale detector misalignment Invariant mass fit model: background parametrisation $B_s^0 \to D_s^{*-} \pi^+$ and $B^0 \to D_s^- \pi^+$ contributions Decay-time fit model: decay-time resolution model neglecting correlation among observables Cross-checks: kinematic correlations Total systematic uncertainty

Systematic uncertainty [ps⁻¹]

0.0007
0.0018
0.0020
0.0002
0.0005
0.0011
0.0011
0.0003
0.0032

